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Surface fluctuations and the stability of metal nanowires
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The surface dynamics and thermodynamics of metal nanowires are investigated in a continuum model.
Competition between surface tension and electron-shell effects leads to a rich stability diagram, with fingers of
stability extending to extremely high temperatures for certain magic conductance values. The linearized dy-
namics of the nanowire’s surface are investigated, including both acoustic surface phonons and surface self-
diffusion of atoms. On the stability boundary, the surface exhibits critical fluctuations, and the nanowire
becomes inhomogeneous. Some stability fingers coalesce at higher temperatures, or exhibit overhangs, leading
to reentrant behavior. The nonlinear surface dynamics of unstable nanowires are also investigated in a single-
mode approximation. We find evidence that some unstable nanowires do not break, but rather neck down to the
next stable radius.
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I. INTRODUCTION

Metal wires play an essential role in all electrical circui
from power distribution between cities to interconnects
integrated circuits. In today’s technology, feature sizes do
to approximately 100 nm are the state of the art, but curr
trends,1 consistent withMoore’s law,2 extrapolate to 1-nm
technology by 2020. A question of fundamental importan
is whether metal will retain its role as the conductor
choice even at the ultimate limit of atomic-scale technolo
or whether it must be replaced with more exotic conducto
such as carbon nanotubes.3

A macroscopic analysis of the mechanical properties
thin metal wires suggests that it might be difficult to fab
cate wires thinner than a few thousand atoms in cross
tion: Consider a cylindrical wire of radiusR and lengthL.
The maximum tension that the wire can sustain before
onset of plastic flow isFY5pR2sY , wheresY is theyield
strength. On the other hand, the force due to the surfa
tensionss in a thin wire isFs52pRss . If uFsu.FY , one
would expect the wire to undergo plastic flow and, ifL
.2pR, to break up under surface tension, as in theRayleigh
instability of a column of fluid.4 This estimate gives a mini
mum radius for solidity,Rmin5ss /sY . The parameters fo
several simple metals are given in Table I. Plateau realize
early as 1873 that this surface-tension-driven instability o
cylinder is unavoidable if cohesion is due solely to classi
pairwise interactions between atoms.5

A great deal of experimental evidence has accumula
over the past decade, however, indicating that metal na
wires considerably thinner than the above estimate can
fabricated by a number of different techniques.11–18 Even
wires with lengths significantly exceeding their circumfe
ence were found to be remarkably stable,13,14,17 indicating
that some new mechanism must intervene to prevent t
breakup.

An important technique which has been used to model
energetics of metal nanowires is classical molecu
dynamics,19–24 which utilizes short-ranged interatomic po
tentials optimized to fit the bulk properties of solids.Th
technique has had considerable success, including predi
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the formation of metal nanocontacts in scanning tunnel
microscopy experiments19 and predicting noncrystalline or
der in nanowires.22 However, this approach, which neglec
quantum-size effects, is unable to avoid the Rayleigh ins
bility in long wires.22–24

A clue to the resolution of this problem was provided
the observation of electron-shell structure in conducta
histograms of alkali metal nanocontacts.15 Like the surface
tension, quantum-size effects arising from the confinemen
the conduction electrons within the cross section of the w
become increasingly important as the wire is scaled down
atomic dimensions. In fact, a linear stability analysis25 of
metal nanowires within the free-electron model found th
the Rayleigh instability can be completely suppressed
certain favorable radii.

In this paper, we investigate the surface dynamics a
thermodynamics of simple metal nanowires in a continu
approach, in order to shed further light on their unusual s
bility properties. The starting point for our analysis is th

TABLE I. The yield strengthsY , ~Ref. 6! surface energyss ,
~Ref. 7! and curvature energygs ~Ref. 8! of various monovalent
metals. The values~Refs. 9 and 10! in the free-electron model
ss(FEM)5«FkF

2/80p and gs(FEM)54«FkF/45p2, are shown for
comparison. For a wire of radiusR,ss /sY , the stress due to sur
face tension exceedssY , signaling a breakdown of macroscop
elasticity theory. The electrical conductanceGmin of a ballistic wire
of radiusRmin5ss /sY is shown in the rightmost column, in units o
the conductance quantumG052e2/h. Note thatG/G0 is approxi-
mately equal to the number of atoms that fit within the cross sec
for monovalent metals.

Metal sY ss ss(FEM) gs gs(FEM) ss /sY Gmin

~MPa! ~N/m! ~N/m! ~pN! ~pN! ~nm! (G0)

Cu 210 1.5 0.83 190 140 7.1 2300
Ag 140 1.0 0.51 154 95 7.4 1900
Au 100 1.3 0.51 257 96 13 5600
Li 15 0.44 0.37 99 75 29 26000
Na 10 0.22 0.17 39 41 22 1000
©2003 The American Physical Society14-1
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thermodynamic stability diagram shown in Fig. 1. Compe
tion between surface tension and electron-shell effects le
to a complex landscape of stable fingers and arches ext
ing up to very high temperatures: cylindrical wires who
electrical conductance is a magic number 1, 3, 6, 12,
23, . . . times the conductance quantumG052e2/h are pre-
dicted to be stable with respect to small perturbations up
temperatures well above the bulk melting temperatureTM
'0.01TF , whereTF is the Fermi temperature. This findin
suggests that metal nanowires may be remarkably rob
which is cause for optimism about their potential for nan
electronics applications.26 Figure 1 is akin to aphase dia-
gram for metal nanowires; the nature of the different pha
is revealed in this paper through a study of the surface
namics for small perturbations about a cylinder. We find t
the stable fingers correspond to homogeneous~i.e., transla-
tionally invariant! phases, while the intervening regions co
respond to inhomogeneous phases.

II. MODEL

The continuum model we employ allows for an analytic
treatment of the long-wavelength surface modes used
characterize the different phases in Fig. 1, as well as a
rect treatment of quantum-size effects, which are essenti
stabilize long nanowires. The ionic degrees of freedom of
wire are modeled as an incompressible, irrotational fluid,
the conduction electrons are treated as a Fermi gas con
within the wire by Dirichlet boundary conditions at the su
face. Electron-electron interactions are included only a
macroscopic level~by requiring the wire to be electrically
neutral!, since it is well known9,10,27 that the leading meso
scopic shell-correction to the energy is independent of in
actions. Calculations including interactions at the mean-fi
level28,29 yield shell effects very similar to those in the fre
electron model.9,30

Modeling the ionic degrees of freedom as a fluid is mo

FIG. 1. Stability of cylindrical metal nanowires as a function
radius and temperature. Shaded regions indicate stability with
spect to small perturbations,A(R0 ,T).0; unshaded regions deno
unstable configurations,A(R0 ,T),0. HereTF is the Fermi tem-
perature,kF the Fermi wave vector, andR0 the mean radius of the
wire. The quantized conductance values of some of the stable w
are indicated.
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vated by the argument presented in Table I, which indica
that metal nanowires thinner than a few thousand atom
cross section should be very plastic. The free-electron mo
for the conduction electrons is appropriate to descr
electron-shell effects in monovalent metals, and as the va
in Table I indicate, even describes some macroscopic p
erties of alkali metals semiquantitatively. Although the co
tinuum approximation is not justifieda priori in the limit of
atomically thin wires, this model is nonetheless justifieda
posterioriby its success in describing simple metal cluster31

of comparable dimensions. Cohesion and quantum trans
in gold nanocontacts were also successfully described w
this model.30,32,33The directionality of bonding due to con
tributions fromp, d andf electrons is of course absent fro
the free-electron model, as are element-specific effects, s
as the tendency toward surface reconstruction, which
argued to play an essential role in the formation of atom
chains.34 Nonetheless, wires withG5G0 are predicted to be
very stable within the free-electron model, and the stren
of a metallic bond in such a wire is significantly greater th
that in the bulk.9,30

An empirical justification for our continuum model come
from experimental results indicating that electron-shell
fects dominate over ionic ordering in sufficiently thin alka
metal16 and gold18 wires. Yansonet al.16 found an interesting
interplay between electron-shell effects and atomic-shell
fects in alkali metal nanocontacts. Electron-shell effects w
found to be most important in the lighter elements lithiu
and sodium, presumably due to the larger Fermi energie
the conduction electrons and the lighter, more mobile io
while atomic-shell effects were most important in the heav
element potassium. A crossover from electron-shell struc
to atomic-shell structure in conductance histograms w
found for conductance valuesG/G0'36 in potassium, while
electron-shell effects were found to dominate even
G/G0.100 in lithium. An intermediate behavior was ob
served for sodium. Interestingly, the competition between
two effects was found to be history dependent. In a particu
sequence of histograms obtained by cycling a potass
break junction, an evolution from atomic-shell structure
electron-shell structure was observed.16 Most recently, a
similar interplay between electron-shell structure a
atomic-shell structure was also observed in go
nanocontacts.18

These fascinating experimental results cry out for dee
theoretical investigations of the stability and structure
metal nanowires. While the geometry of the nanowires st
ied in Refs. 15,16, and 18 was not directly determined, th
may be rather short due to the fabrication method, so that
connection35 to the contacts may play an important role.
this paper, we study the more theoretically tractable—a
more technologically relevant—problem of the stability a
surface dynamics of long metal nanowires. Our analy
should be directly relevant for the nanowires studied in Re
13 and 17.

III. LINEAR STABILITY ANALYSIS

In our continuum model, the ionic degrees of freedom
completely determined by the surface coordinates of
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SURFACE FLUCTUATIONS AND THE STABILITY OF . . . PHYSICAL REVIEW B 68, 165414 ~2003!
wire. Motivated by the fact that only modes which preser
axial symmetry participate in the surface-tension driven
stability of a cylinder,4 we restrict our consideration t
axially-symmetric perturbations,

R~z,t !5R01 (
n

b~qn ,t !eiqnz, ~1!

whereR(z,t) is the radius of the wire at positionz and time
t, R0 is the unperturbed radius, andb(q,t)5b* (2q,t) are
complex Fourier coefficients. Periodic boundary conditio
are assumed for a wire of lengthL, so thatqn52pn/L, with
n an integer bounded byunu<N'kFL/p ~a lattice cutoff!.
Since the total number of atoms comprising the nanowir
unchanged by the perturbation,b(0,t) is related to the othe
b(qn ,t) by volume conservation

b~0,t !1
b2~0,t !

2R0
52

1

R0
(
n51

N

ub~qn ,t !u2, ~2!

and may be eliminated.
For small perturbations, the grand canonical potentia

the electron gas is quadratic in the Fourier coefficie
b(q,t), and determines the potential energyU of the ions in
the Born-Oppenheimer approximation,

U5U0~R0 ,T!1L (
n51

N

a~qn ;R0 ,T!ub~qn ,t !u2, ~3!

whereU0(R0 ,T) is the potential energy of an unperturbe
cylinder:

U0~R,T!

L
5pR2u12pRss2pgs1V~R,T!. ~4!

Hereu is the macroscopic free energy density of the elect
gas, ss is the surface tension,gs is the surface curvature
energy~c f. Table I!, and V is a mesoscopic electron-she
correction. The mode stiffnessa(q;R0 ,T) has the following
form25 in the semiclassical approximation, valid for lon
wavelength perturbations:

a~q;R,T!522pss /R12p~ssR2gs!q
2

1S ]2

]R2
2

1

R

]

]RD V~R,T!, ~5!

where

V~R,T!5
2«F

p (
w51

`

(
v52w

`
avw~T! f vw

v2Lvw

cos~kFLvw23vp/2!.

~6!

The sum in Eq.~6! includes all classical periodic orbit
(v,w) in a disk billiard ~see Fig. 2!. Lvw52vR sin (pw/v)
is the length of an orbit, the factorf vw51 for v52w,
2 otherwise, accounts for the invariance under time-reve
symmetry of some orbits, andavw(T)5tvw / sinhtvw (tvw
5pkFLvwT/2TF) is a temperature-dependent dampi
factor.27,36
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Since ]2a/]q2.0 for all physically meaningful radii,
long-wavelength perturbations cost the least energy,37 and
the stability of the wire is determined by the sign
A(R0 ,T)[a(q50;R0 ,T). For A(R0 ,T).0, a nanowire is
stable with respect to all small perturbations, and is henc
metastable thermodynamic state. ForA(R0 ,T),0, the nano-
wire is unstable. The stability diagram so determined
shown in Fig. 1. In Fig. 1, the valuesss5ss(FEM) andgs
5gs(FEM), appropriate for alkali metals, were used~cf.
Table I!. For larger values ofss ~e.g., for noble metals!, the
maximum temperatures~in units of TF) of the stable fingers
are reduced somewhat, but the stability diagram is qua
tively similar.

Further insight into the stability criterionA.0 is pro-
vided by the identity

A~R0 ,T!5S ]2

]R0
2

2
1

R0

]

]R0
D U0~R0 ,T!

L
. ~7!

The wire can lower its potential energy via a volum
conserving separation into thicker and thinner segment
and only if A,0. A,0 thus corresponds to aninhomoge-
neous phase, whileA.0 corresponds to ahomogeneous
phase.

Our analysis of stability in terms of the convexity of th
constrained energy functional is quite different from simp
comparing the energy of cylinders of different radius,22,29,38

which does not address the fundamental question ofwhether
any cylinder is stable. We also point out that for a suffi
ciently large system, the number of atoms is conserve
neglecting sublimation—and the depletion of atoms from
finite segment of wire38 can be described as a finite
wavelength perturbation of a larger system.

Note that our stability analysis is carried out at fixedL.
The tensile force necessary to fix the length of the wire
given byF52]U0 /]L @plus a small correction due to su
face fluctuations, cf. Eq.~23!#, and was previously calculate
as a function of radius in this model in Refs. 9,10, and
Our stability analysis is thus appropriate to describe nan
ires under tensile stress, such as those studied in the ex
ments of Refs. 11–18. The stability of a nanowire with fr
ends is an open question.

FIG. 2. Classical periodic orbits~Refs. 27 and 36! of an electron
in a plane perpendicular to the axis of the wire, labeled (v,w),
wherev is the number of vertices andw is the winding number.
4-3
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IV. LINEARIZED SURFACE DYNAMICS

A. Surface phonons

We first consider inertial dynamics of the ionic bac
ground. Assuming that the ionic medium is irrotational a
incompressible,39 its velocity distributionvW (rW,t) can be writ-
ten in terms of a potential satisfying the Laplace equatio

¹2F~rW,t !50, ~8!

where vW (rW,t)52¹F(rW,t). The general solution to this
equation with axial symmetry, which is regular atr 50, can
be written4

F~rW,t !5F~r ,z,t !5 (
n52N

N

d~qn ,t !I 0~qnr !eiqnz, ~9!

whereI 0 is the modified Bessel function of order zero andr
is the distance of an ion from thez axis.

For small deformations, the relation between the coe
cientsd(qn ,t) in expansion~9! and the Fourier coefficient
b(qn ,t) of surface perturbation~1! can be determined by th
condition that the radial component of the velocity at t
surface is

v r52
]F~r ,z,t !

]r
ur 5R0

5
]R~z,t !

]t
~10!

plus termsO(b3). Therefore, we have

d~qn ,t !52
1

qnI 1~qnR0!

]b~qn ,t !

]t
, ~11!

whereI 1 is the first-order modified Bessel function. The k
netic energy of the ionic medium is then given by

K5
r i

2 E d3r ¹F* ~rW,t !•¹F~rW,t !

5L (
n51

N

m~qn ,R0!U]b~qn ,t !

]t U2

, ~12!

wherer i is the ionic mass density, and

m~q,R!5r i

2pRI0~qR!

qI1~qR!
. ~13!

Details of the derivation of Eqs.~12! and ~13! are given in
the Appendix. Combining Eqs.~3! and ~12! yields a Hamil-
tonian for surface phonons, with frequencies

v~q;R0 ,T!5Aa~q;R0 ,T!

m~q,R0!
. ~14!

Generically,v(q)}q as q→0 due to theq-dependence o
m(q,R0). Equation ~14! thus describesacoustic surface
phonons. On the stability boundaryA50, one hasv(q)
}q2 as q→0. For A,0, v is imaginary, and long-
wavelength modes grow exponentially@see Fig. 5~a!#.
16541
-

B. Surface diffusion

Surface deformation~1! also produces a gradient i
chemical potential that drives the surface atoms to diffuse
process likely to be important for large-scale deformation35

The surface current of atoms is given by Fick’s law

JW52
rsDs

kBT
¹m, ~15!

wherers is the surface density of atoms andDs is the surface
self-diffusion constant. Using the continuity equation for t
surface current, Eq.~15! can be converted into a~linearized!
equation of motion for the profileR(z,t),

]R~z,t !

]t
5

rsDsva

kBT

]2m

]z2
, ~16!

whereva53p2/kF
3 is the volume of an atom. The chemic

potentialm of an atom is obtained by calculating the chan
in free energy with the addition of an atom at pointz0,

m~z0 ,t !5U@R~z,t !1Cd~z2z0!#2U@R~z,t !#, ~17!

whereC5va/2pR is chosen so that the volume of an atom
added. From Eq.~3!, one obtains

m~z,t !5m01
«Fva

pR0
(

n52N

N

a~qn ;R0 ,T!b~qn ,t !eiqnz,

~18!

wherem0(R0 ,T) is the chemical potential of the unperturbe
cylinder. Combining Eqs.~16! and~18! yields an equation of
motion for the Fourier componentb(q,t),

]b~q,t !

]t
52G~q;R0 ,T!b~q,t !, ~19!

where the relaxation rate

G~q;R0 ,T!5
rsDsva

2

pR0kBT
q2a~q;R0 ,T!. ~20!

Thus, one finds that under surface diffusion alone, a p
turbed metastable wire relaxes exponentially toward a cy
drical shape. Fora,0, the mode grows exponentially.

C. Combined dynamics

Combining inertial and diffusive processes, the lineariz
~classical! equation of motion for the surface modes is

]2b~q,t !

]t2
1G~q!

]b~q,t !

]t
1v2~q!b~q,t !50. ~21!

From theq dependence of Eqs.~14! and ~20!, one sees tha
G(q)/v(q)→0 asq→0, indicating that diffusive processe
can be neglected in this limit, at least for small deformatio
In general, the relative time scales for inertial and diffusi
dynamics depend on the value ofDs . For this quasi-one-
dimensional diffusion problem, one can estimateDs
;(vD /rs) exp (2Es/kBT), wherevD is the Debye frequency
4-4
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SURFACE FLUCTUATIONS AND THE STABILITY OF . . . PHYSICAL REVIEW B 68, 165414 ~2003!
andEs is the activation energy for surface diffusion, which
comparable to the energy of a single bond in the solid. W
this estimate, one hasv(q)@G(q) for all q, indicating that
the surface phonons are underdamped.

The picture of the surface dynamics of~meta!stable metal
nanowires which emerges from this analysis is that there
separation of time scales: on short time scales, the sur
oscillates rapidly about the cylindrical equilibrium shap
while, on much longer time scales, surface atoms diff
irreversibly.

V. CRITICAL SURFACE FLUCTUATIONS

In the harmonic approximation@Eqs. ~3! and ~12!#, the
total free energyV(R0 ,T) of the nanowire is given by the
free energy of the unperturbed cylinder plus the Helmho
free energy of the surface phonons,

V5U01 (
n51

N

@\vn12kBT ln ~12e2b\vn!#, ~22!

where vn[v(qn ;R0 ,T) and b51/kBT. The equilibrium
tension in the wire is

F52
]V

]L
52

]U0

]L
1dFphonon, ~23!

where the main contribution2]U0 /]L was previously cal-
culated in Refs. 9,10, and 30, anddFphononis a small correc-
tion that is singular at the stability boundaries, where
surface modes become soft.

The softening of the surface modes on the stability bou
aries leads to critical surface fluctuations. Given the stiffn
@Eq. ~5!# and frequency@Eq. ~14!# of the surface modes, th
mean-square thermal fluctuationdR2 of the radius of the
nanowire can be calculated in the usual way,40

dR2[^~R2R0!2&5
1

L (
n51

N
\vn@2 f ~vn!11#

a~qn ;R0 ,T!
, ~24!

where f (v)5@ exp (b\v)21#21 is the Planck distribution.
Note that, aside from a small quantum correction, the m
nitude of the surface fluctuations follows from the equipa
tion theorem applied to Eq.~3!, and is thus largely indepen
dent of the nature of the surface dynamics—whether ine
or diffusive.

Figure 3 showsdR for nanowires of finite length at room
temperature as a function of their mean radius. The io
mass and Fermi temperature were taken to be that of sod
Within a metastable region,kFdR!1 and is approximately
independent ofL, indicating that such wires are near
atomically smooth at this temperature. The zero-point mot
contributes roughly 50% of the surface fluctuation within
stable region for sodium nanowires atT5300 K. With in-
creasing temperature, the thermal contribution todR grows
proportional toAT, according to the equipartition theorem
Note that the harmonic approximation is expected to br
down whenkFdR;1.

The surface fluctuationdR exhibits sharp peaks at th
stability boundaries, reaching the value
16541
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dR2uA(R0 ,T)505
kBT

4p3~sR02g!
L, ~25!

plus a small quantum correction.dR thus scales asL1/2 on
the stability boundary, like the finite-size scaling at t
roughening transition of a planar interface.41 At T50, dR
remains small and approximately independent ofL on the
stability boundary. The absence of critical surface fluctu
tions atT50 is also consistent with the behavior of plan
interfaces.40

The stability boundaryA(R0 ,T)50 defines a~multiple-
valued! critical temperatureTc5Tc(R0) as a function of the
mean radius, or alternatively a critical mean radiusRc
5Rc(T) as a function of temperature~see Fig. 1!. Within the
harmonic approximation,dR grows with an exponentn
521/4 as R0→Rc or T→Tc , as expected from the
Ornstein-Zernicke fluctuation theory. This critical behavio
which is cut off whendR approaches the value given i
Eq. ~25!, is illustrated in Fig. 3.

One can also study the time dependence42 of dR for an
initially cylindrical wire undergoing thermal fluctuations
Using the classical equipartition theorem, for each mode
have

^ub~qn ,t !u2&5
2kBT

L

sin2 ~vnt !

a~qn ;R0 ,T!
, ~26!

where sin2 (vnt) describes the standing capillary waves. T
surface fluctuations then grow as a function of time acco
ing to

dR2~ t !5
4kBT

L (
n51

N
sin2 ~vnt !

a~qn ;R0 ,T!
. ~27!

On the stability boundariesA(R0 ,T)50, the dispersion re-
lation v(q);q2, and one findsdR(t);t1/4 asymptotically
for timesv1

21@t@vN
21 . The dynamic exponentz51/4 dif-

fers from that of a planar interface42 due to the different
dispersion relation for the surface modes.

However, all these scaling relations hold only in a limite
range, since the asymptotic limitdR→` characterizing the
roughening transition40–42 is unphysical in nanowires, due t

FIG. 3. Root-mean-square fluctuations of the radius of me
stable sodium nanowires of lengthL510R0 . dR is undefined for
unstable wires within the harmonic approximation, and is n
shown.
4-5
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C.-H. ZHANG, F. KASSUBEK, AND C. A. STAFFORD PHYSICAL REVIEW B68, 165414 ~2003!
their finite radius. On the stability boundary, the surface d
not roughen in a thermodynamic sense, but the nanow
does become inhomogeneous.

VI. REENTRANT BEHAVIOR

Perhaps most interesting is thereentrantbehavior occur-
ring on the arches and overhangs in the stability diagr
~Fig. 1!. For instance, a wire withkFR0519 is metastable
and homogeneous in the temperature intervalTc1,T,Tc2,
with Tc1'0.0072TF andTc2'0.046TF . The surface exhib-
its critical fluctuations asT→Tc1

1 or T→Tc2
2 , at which

points the wire makes a transition to an inhomogene
phase. The transition atTc2 is conventional, in the sense th
the inhomogeneous phase is the high-entropy phase. H
ever, the inhomogeneous phase belowTc1 haslower entropy
than the homogeneous phase aboveTc1. Figure 4~a! shows
the total entropyS52]V/]T of the nanowire as a function
of temperature, including both electron and phonon contri
tions, whereV is given by Eq.~22!. The electronic entropy
is regular at the critical points, but the phonon entropy
singular in the harmonic approximation, due to the em
gence of soft surface modes. The singular contribution to
phonon entropy is

Ssing~R0 ,T!52
\

L (
n51

N

f ~vn!
]v~qn ;R0 ,T!

]T
, ~28!

indicating that the softening of a phonon mode with decre
ing temperature indeed leads to a decrease in entropy.

To understand the counterintuitive behavior atTc1, it is
useful to consider the electron-shell correctionV to the en-
ergy of the wire, shown in Fig. 4~b!. Above Tc1 , V has a
single broad minimum nearkFR0519, but as the tempera
ture is lowered, and the fine structure in the shell poten
emerges, this single minimum splits into two minima
kFR0518.75 and 19.2. To lower its free energy, the syst
would like to fall into one of these two minima, but due

FIG. 4. ~a! The total entropy per unit length of a nanowire wi
kFR0519 vs temperature. The ionic mass was taken to be tha
sodium.~b! The electron-shell potentialV(R0 ,T), from Eq. ~6!.
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volume conservation, such a global change is not poss
The wire thus undergoes phase separation into thick and
segments.35

VII. UNSTABLE WIRES

Finally, let us discuss the dynamics of unstable wir
Figure 5~a! shows the real and imaginary parts of the surfa
phonon frequency versus wavevector for a typical unsta
wire. One modeb(qm ,t) grows exponentially faster than a
others in the harmonic approximation, and thus may be
pected to dominate. For a single Fourier componentb(qm),
the potential energyU@b(qm)# of the nanowire can be evalu
ated for arbitrarily largeb using semiclassical perturbatio
theory.U may be expanded semiclassically as9,27

U5uV1ssS2gsC1dU. ~29!

The volumeV, surface areaS, and integrated mean curva
ture C of the nanowire can be calculated for arbitrary defo
mations by simple geometric considerations. Using semic
sical perturbation theory,43–45 the electron-shell correction
dU can again be expressed in terms of the classical peri
orbits of a disk billiard, leading to an expression similar
Eq. ~6!:

dU@b~qm!#

L
5

2«F

p (
w51

`

(
v52w

`
avw~T! f vw

v2Lvw

3F S 11
b~0!

R0
D cos~uvw!J0~fvw!

2
2b~qm!

R0
sin~uvw!J1~fvw!G , ~30!

of FIG. 5. ~a! The dispersion relation for the surface modes of
unstable nanowire withkFR058.95 atT50. The ionic mass was
taken to be that of sodium.~b! The potential energyU@b(q)# of the
same nanowire for sinusoidal deformations withq50 andq5qm

50.208kF , respectively. Note that the energyU0 of a straight wire
has been subtracted. The different energies of these two mod
mainly due to the increased surface energy at finiteq.
4-6
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where uvw5kFLvw(11b(0)/R0)23vp/2, fvw
52kFLvwb(qm)/R0 , Ji is the i th order Bessel function, an
b(0) is related tob(qm) by Eq. ~2!. The result is shown in
Fig. 5~b!. Although the wire is unstable to breakup unde
hypothetical long-wavelength perturbation, the energy of
fastest growing mode reaches a minimum at a finite am
tude, suggesting that the surface deformationsaturates, and
that the wire does not break up, but rather necks down to
next stable radius. A similar scenario is predicted under
diffusive dynamics of Eq.~19!. An explicit nonlinear dy-
namical simulation35 confirms these predictions.

VIII. CONCLUSIONS

The stability and surface dynamics of metal nanowi
were investigated in a continuum approach, includ
electron-shell effects. A thermodynamic phase diagram
jellium nanowires was derived, which predicts that cylind
cal wires with certain ‘‘magic’’ conductance values are sta
with respect to small perturbations up to remarkably h
temperatures. On the stability boundary, the surface exh
critical fluctuations, and the nanowire becomes inhomo
neous. Both surface phonons and surface self-diffusion
atoms were included in the linearized surface dynamics
was found that inertial dynamics~phonons! always dominate
the long-wavelength behavior, including the critical poin
~It must be emphasized, however, that this conclusion ho
only for small perturbations of the surface. The irreversib
diffusion of surface atoms is undoubtedly crucial for larg
scale surface deformations.35! An interesting reentrant be
havior was predicted, in which a straight wire is stabilized
intermediate temperatures, but undergoes phase separ
into thick and thin segments as the temperature is lowe
Finally, for unstable wires, the surface deformation w
found to grow exponentially, dominated by a single Four
component, and to saturate at a finite amplitude, indica
that unstable wires may not break, but rather neck down
the next stable radius.

The results presented in this paper should be directly
.
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evant for nanowires made of monovalent metals, especi
the alkali metals and gold, for which there is clear expe
mental evidence of electron-shell effects.15,16,18 Moreover,
this simple model may provide qualitative insight into th
genericsurface properties of metal nanowires, which cou
guide investigations of more realistic, material-specific mo
els.
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APPENDIX: IONIC KINETIC ENERGY

Here we present some details of the derivation of expr
sion ~12! for the kinetic energy of the ions. Inserting Eq.~9!
into the first line of Eq.~12! and performing thez integral,
one obtains

K5pr iL (
n

E
0

R0
rdr @qn

2I 08
2~qnr !1qn

2I 0
2~qnr !#ud~qn ,t !u2.

~A1!

Using the relationI 08(x)5I 1(x) and the identity

d

dx
@xIm~x!I m8 ~x!#5xF I m8

21S 11
m2

x2 D I m
2 G , ~A2!

the radial integral in Eq.~A1! may be performed, leading to
the result

K5pr iL (
n52N

N

qnR0I 0~qnR0!I 1~qnR0!ud~qn!u2.

~A3!

Finally, eliminating d(qn ,t) from Eq. ~A3! using relation
~11!, one obtains the second line of Eq.~12!.
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