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Surface fluctuations and the stability of metal nanowires
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The surface dynamics and thermodynamics of metal nanowires are investigated in a continuum model.
Competition between surface tension and electron-shell effects leads to a rich stability diagram, with fingers of
stability extending to extremely high temperatures for certain magic conductance values. The linearized dy-
namics of the nanowire’s surface are investigated, including both acoustic surface phonons and surface self-
diffusion of atoms. On the stability boundary, the surface exhibits critical fluctuations, and the nanowire
becomes inhomogeneous. Some stability fingers coalesce at higher temperatures, or exhibit overhangs, leading
to reentrant behavior. The nonlinear surface dynamics of unstable nanowires are also investigated in a single-
mode approximation. We find evidence that some unstable nanowires do not break, but rather neck down to the
next stable radius.

DOI: 10.1103/PhysRevB.68.165414 PACS nunifer 68.35.Ja, 47.20.Dr, 61.46w, 68.65.La

[. INTRODUCTION the formation of metal nanocontacts in scanning tunneling

Metal wires play an essential role in all electrical circuits, microscopy experimentdand predicting noncrystalline or-
from power distribution between cities to interconnects inder in nanowire€? However, this approach, which neglects
integrated circuits. In today’s technology, feature sizes dowrfluantum-size effects, is unable to avoid the Rayleigh insta-
to approximately 100 nm are the state of the art, but currenility in long wires?~4
trends! consistent withMoore's law? extrapolate to 1-nm A clue to the resolution of this problem was provided by
technology by 2020. A question of fundamental importancehe observation of electron-shell structure in conductance
is whether metal will retain its role as the conductor ofhistograms of alkali metal nanocontatis.ike the surface
choice even at the ultimate limit of atomic-scale technologytension, quantum-size effects arising from the confinement of
or whether it must be replaced with more exotic conductorsthe conduction electrons within the cross section of the wire
such as carbon nanotubgs. become increasingly important as the wire is scaled down to

A macroscopic analysis of the mechanical properties ofttomic dimensions. In fact, a linear stability analy3isf
thin metal wires suggests that it might be difficult to fabri- metal nanowires within the free-electron model found that
cate wires thinner than a few thousand atoms in cross sethe Rayleigh instability can be completely suppressed for
tion: Consider a cylindrical wire of radiuR and lengthL.  certain favorable radii.
The maximum tension that the wire can sustain before the In this paper, we investigate the surface dynamics and
onset of plastic flow iy=7R?cy, whereoy is theyield  thermodynamics of simple metal nanowires in a continuum
strength On the other hand, the force due to the surfaceapproach, in order to shed further light on their unusual sta-
tensiono in a thin wire isF= — wRos. If |F>Fy, one  bility properties. The starting point for our analysis is the
would expect the wire to undergo plastic flow and,Lif
>2mR, to break up under surface tension, as inRagleigh TABLE I. The yield strengthoy, (Ref. 6 surface energyrs,
instability of a column of fluid® This estimate gives a mini- (Ref. 7 and curvature energy;s (Ref. § of various monovalent
mum radius for solidityRy,=os/oy. The parameters for metals. The vgtlue$Refs. 9 and 1Pin the free-electron model,
several simple metals are given in Table |. Plateau realized &&(FEM)=&¢Kg/807 and ys(FEM)=4ecke/457%, are shown for
early as 1873 that this surface-tension-driven instability of g£omparison. For a wire of radil8<os/oy, the stress due to sur-
cylinder is unavoidable if cohesion is due solely to classicaf2°€ t€nsion exceedsy, signaling a breakdown of macroscopic
pairwise interactions between atoms. elastlc_lty theory. The _electrlcal _condut_:tar@ﬁ,in of a ballls_tlc wire

A great deal of experimental evidence has accumulate&f radiusRnn= s/ oy is ShOV_Vn 'nzthe rightmost column, in units of
over the past decade, however, indicating that metal nano-< conductance quantu@,=2e /h. Note t.hat.G/.GO 'S approxt-

. . ; . mately equal to the number of atoms that fit within the cross section
wires considerably thinner than the above estimate can b]%r monovalent metals
fabricated by a number of different techniquést® Even '
wires with lengths significantly exceeding their circumfer- \;qo¢q oy oo 0FEM) y. v(FEM) oo/oy G

2417 o
ence were found to be remarkably stabté*!7 indicating _ MPa (N/m) (N/m)  (N)  (N)  (m) (Gy)
that some new mechanism must intervene to prevent their
breakup. Cu 210 15 0.83 190 140 7.1 2300

An important technique which has been used to model thag 140 1.0 0.51 154 95 7.4 1900
energetics of metal nanowires is classical moleculanu 100 1.3 051 257 96 13 5600
dynamics:®~2* which utilizes short-ranged interatomic po- Lj 15 044 037 99 75 29 26000
tentials optimized to fit the bulk properties of solids.This Na 10 0.22 0.17 39 a1 22 10000

technique has had considerable success, including predicting
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vated by the argument presented in Table I, which indicates
that metal nanowires thinner than a few thousand atoms in
cross section should be very plastic. The free-electron model
for the conduction electrons is appropriate to describe
electron-shell effects in monovalent metals, and as the values
in Table | indicate, even describes some macroscopic prop-
erties of alkali metals semiquantitatively. Although the con-
tinuum approximation is not justified priori in the limit of
atomically thin wires, this model is nonetheless justifeed
posterioriby its success in describing simple metal clusters
of comparable dimensions. Cohesion and quantum transport
in gold nanocontacts were also successfully described with
2 4 6 8 10 12 14 16 18 20  this modef®®2*3The directionality of bonding due to con-
keR, tributions fromp, d andf electrons is of course absent from

the free-electron model, as are element-specific effects, such
as the tendency toward surface reconstruction, which was
€argued to play an essential role in the formation of atomic
chains®* Nonetheless, wires wit =G, are predicted to be
perature ke the Fermi wave vector, and, the mean radius of the very stablg within .the free_ele.cm.)n ’.“0‘?'.6" and the strength
wire. The quantized conductance values of some of the stable wire fa metalllc bonsc(i) in such a wire is significantly greater than
are indicated. that in the bulk’

An empirical justification for our continuum model comes
_from experimental results indicating that electron-shell ef-

tion between surface tension and electron-shell effects |eaJ§ctsF(gommated%vgr lonic ordering '12 sufﬂment!y thin "’.llka“
to a complex landscape of stable fingers and arches extenf1et@ and gola™wires. Yansoret al. ™ found an Interesting

ing up to very high temperatures: cylindrical wires Whoselnterp'lay bet_vveen electron-shell effects and atomic-shell ef-
electrical conductance is a magic number 1, 3, 6, 12, 17fects in alkali metal_ nanocontacts. El_ectron-shell effec?s were
23,... times the conductance quantu@y=2e%/h are pre- found to be most important in the lighter eleme:nts I|th_|um
dicted to be stable with respect to small perturbations up t nd sodium, presumably due to the larger Fermi energies of

temperatures well above the bulk melting temperaftiye vt]ﬁ”cor;dumﬁtlonh elllecftfror;s v?/mrj trr:]e Iltgir:rt]er, rf[n?]ﬁnr?ﬁb'*e I?/insr'
~0.01T¢, whereTg is the Fermi temperature. This finding € atomic-shetl eflects were most importa € heavie

suggests that metal nanowires may be remarkably robus‘?lemem potassium. A crossover from electron-shell structure

which is cause for optimism about their potential for nano—;fo a;o?m-shﬁll ftructurel |23/<(:30r1<flggtgncet hlsfcogramhsll was
electronics application®. Figure 1 is akin to ghase dia- oundor conductance valu 0~ 30 In potassium, whiie

. . lectron-shell effects were found to dominate even for
ram for metal nanowires; the nature of the different hase$ L ; . .
g P G/Gy>100 in lithium. An intermediate behavior was ob-

is revealed in this paper through a study of the surface dy- . . .

namics for small perturbations about a cylinder. We find tha erved for sodium. Interestmgly, the competition between the

the stable fingers correspond to homogene@es, transla- wo effects was.found to be hls'gory dependent. Ina partlcglar

tionally invarian} phases, while the intervening regions cor- sequence (.)f h|stograms_ obtained by _cyclmg a potassium

respond to inhomogeneous phases. break junction, an evolution from atomic-shell structure to
electron-shell structure was obser/8dMost recently, a
similar interplay between electron-shell structure and

Il. MODEL atomic-shell structure was also observed in gold
nocontact®
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FIG. 1. Stability of cylindrical metal nanowires as a function of
radius and temperature. Shaded regions indicate stability with r
spect to small perturbation8(R,,T)>0; unshaded regions denote
unstable configuration$A(R,,T)<0. HereTg is the Fermi tem-

thermodynamic stability diagram shown in Fig. 1. Competi

The continuum model we employ allows for an analytical naTh taseinali . al it tfor d
treatment of the long-wavelength surface modes used tci1 et'?‘e Ia_scmat!ngt_experl:cni? a :e?:-ts cry dout ort eepir
characterize the different phases in Fig. 1, as well as a cofcoretical investigations of the stability and structure o

rect treatment of quantum-size effects, which are essential ﬂ@et_al nanowires. While the geometry of the nanovyires stud-
9 éed in Refs. 15,16, and 18 was not directly determined, they

wire are modeled as an incompressible, irrotational fluid, and"2Y be rat?er short due to the fabrication _method, so that the
8nnectloﬁ to the contacts may play an important role. In

the conduction electrons are treated as a Fermi gas confin%h. wudv th h tically tractabl d
within the wire by Dirichlet boundary conditions at the sur- IS paper, we study the more theoretically tractable—an

face. Electron-electron interactions are included only at gnore technologically relevant—problem of the stability and

macroscopic levelby requiring the wire to be electrically surface dynam'cs of long metal Nanowires. Ol.” e}nalyss
neutra), since it is well know®'%2’ that the leading meso- should be directly relevant for the nanowires studied in Refs.

scopic shell-correction to the energy is independent of inter-13 and 17.

actions. Calculations including interactions at the mean-field

leveP®?yield shell effects very similar to those in the free-

electron modef:*° In our continuum model, the ionic degrees of freedom are
Modeling the ionic degrees of freedom as a fluid is moti-completely determined by the surface coordinates of the

[ll. LINEAR STABILITY ANALYSIS
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wire. Motivated by the fact that only modes which preserve
axial symmetry participate in the surface-tension driven in-
stability of a cylindef® we restrict our consideration to

axially-symmetric perturbations, .1

3.0 .,
R(zt)=Ro+ 2 b(dy )€, (1)
n
whereR(z,t) is the radius of the wire at positianand time
t, Ry is the unperturbed radius, amdq,t)=b*(—q,t) are (4,2) (5.2) 6.2)
complex Fourier coefficients. Periodic boundary conditions
are assumed for a wire of length so thatg,=2#n/L, with FIG. 2. Classical periodic orbitRefs. 27 and 36of an electron

n an integer bounded bjn|<N=~kgL/# (a lattice cutoff. in a plane perpendicular to 'Fhe axis pf the vyirg, labeledw),
Since the total number of atoms comprising the nanowire igvherev is the number of vertices anal is the winding number.
unchanged by the perturbatidn(0,t) is related to the other

b(dn,t) by volume conservation Since #%aldq?>>0 for all physically meaningful radii,

long-wavelength perturbations cost the least en&gnd
b%0t) 1

L 2 the stability of the wire is determined by the sign of
b(0)+ 2R, Rongl [o(an I, @ A(Ry,T)=a(q=0;Ry,T). For A(Ry,T)>0, a nanowire is
o stable with respect to all small perturbations, and is hence a
and may be eliminated. metastable thermodynamic state. B¢R,,T)<0, the nano-

For small perturbations, the grand canonical potential Ofyire is unstable. The stability diagram so determined is
the electron gas is quadratic in the Fourier coefficientshown in Fig. 1. In Fig. 1, the values,= oo(FEM) andy,

b(qg,t), and determ_ines the pot_entiql enetgdyof the ions in = y(FEM), appropriate for alkali metals, were uséd.
the Born-Oppenheimer approximation, Table |). For larger values ofr (e.g., for noble metajsthe
N maximum temperaturesn units of Tg) of the stable fingers
U=Un(Ry, T)+L Ry, T)|b(q. . 1)2, 3 are reduced somewhat, but the stability diagram is qualita-
o(Ro, T +L 2 a(@niRo,T)[B(an DI, (3) fvely similar

. . Further insight into the stability criteriod>0 is pro-
whereUy(Ry,T) is the potential energy of an unperturbed vided by the identity

cylinder:

Uo(R,T
O(T)=7TRZU+27TRUS—7WS+V(R,T). (4) 1 4

Uo(Ro.T)

. @)

Hereu is the macroscopic free energy density of the electron

gas, o, is the surface tensionys is the surface curvature

energy(c f. Table ), andV is a mesoscopic electron-shell The wire can lower its potential energy via a volume-
correction. The mode stiffness(q;Ry,T) has the following ~ conserving separation into thicker and thinner segments if
form® in the semiclassical approximation, valid for long- and only if A<0. A<O thus corresponds to @nhomoge-

wavelength perturbations: neous phase, whileA>0 corresponds to d&@omogeneous
phase.
a(q;R,T)=—27m0/R+27(0R— y5)q? Our analysis of stability in terms of the convexity of the
5 constrained energy functional is quite different from simply
97 14 VIR.T g  comparing the energy of cylinders of different radiag?-8
JrR? RIR (RT), ®) which does not address the fundamental questionhefther
any cylinder is stableWe also point out that for a suffi-
where ciently large system, the number of atoms is conserved—
e = T neglecting sublimationrgand the depletion of atoms from a
eF () finite segment of wiré can be described as a finite-
VIRT)= Twzl T cos(keL,w=3vm/2).  \avelength perturbation of a larger system.
o (6) Note that our stability analysis is carried out at fixed

The tensile force necessary to fix the length of the wire is
The sum in Eq(6) includes all classical periOdiC orbits given byF: —&UO/(;L [p|us a small correction due to sur-
(v,w) in a disk billiard (see Fig. 2 L,,=2vRsin(@W/v)  face fluctuations, cf. E23)], and was previously calculated
is the length of an orbit, the factof,,=1 for v=2w,  as a function of radius in this model in Refs. 9,10, and 30.
2 otherwise, accounts for the invariance under time-reversabur stability analysis is thus appropriate to describe nanow-
symmetry of some orbits, and,,(T)=7,/sinh7,, (7w ires under tensile stress, such as those studied in the experi-
=mkeL, T/2Tg) is a temperature-dependent dampingments of Refs. 11-18. The stability of a nanowire with free
factor?’:3¢ ends is an open question.
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IV. LINEARIZED SURFACE DYNAMICS B. Surface diffusion

A. Surface phonons Surface deformation(1l) also produces a gradient in
chemical potential that drives the surface atoms to diffuse—a
process likely to be important for large-scale deformatitns.
The surface current of atoms is given by Fick’s law

We first consider inertial dynamics of the ionic back-
ground. Assuming that the ionic medium is irrotational and
incompressiblé? its velocity distributionJ(ﬁt) can be writ-
ten in terms of a potential satisfying the Laplace equation

- D
3= 2w, (15)
V2(r,t)=0, ) °
o R wherepg is the surface density of atoms abd is the surface
where v(r,t)=—V®(r,t). The general solution to this self-diffusion constant. Using the continuity equation for the
equation with axial symmetry, which is regularrat 0, can  surface current, Eq15) can be converted into @inearized

be writter{ equation of motion for the profil®(z,t),

N 2

- : dR(z,t)  psDsva 91

= = i0nz = -
CrH=®(r,z0= 3 d(ds,Dlo(dnr)e ™, (9) - T o2 (16)

wherel , is the modified Bessel function of order zero and wherev,=37%/k? is the volume of an atom. The chemical
is the distance of an ion from theaxis. potentialu of an atom is obtained by calculating the change

For small deformations, the relation between the coeffiin free energy with the addition of an atom at pomgt
cientsd(q,,t) in expansion(9) and the Fourier coefficients

b(q,,t) of surface perturbatiofil) can be determined by the m(Zo,1)=U[R(z,1) + C&(z—2p) | -U[R(z,1)], (17)
condition that the radial component of the velocity at thewherec=v /27R is chosen so that the volume of an atom is
. a
surface is added. From Eq(3), one obtains
ad(r,z,t) IR(z,t) . N
= — = FU .
U P LT B0 w@n=pet 5 T alniRo DGy D,
plus termsO(b®). Therefore, we have (18
whereuo(Rg,T) is the chemical potential of the unperturbed
(g, t)=— 1 db(dn 1) (11) cylinder. Combining Eqs(16) and(18) yields an equation of
n dnl1(dnRo) a motion for the Fourier componeii(q,t),
wherel ; is the first-order modified Bessel function. The ki- ab(q,t)
netic energy of the ionic medium is then given by i~ L(@Ro, Tb(a,0), (19
pi 3 - - where the relaxation rate
K=§ d°r VO*(r,t)-Vd(r,t)
2
psDsv
N ) F(GiRo. )= 57 @°a(@GRo.T). (20
=L E m(d,,Ry) M (12) Trote
& tn-Fo ot ' Thus, one finds that under surface diffusion alone, a per-
_ o . turbed metastable wire relaxes exponentially toward a cylin-
wherep; is the ionic mass density, and drical shape. Forr<<0, the mode grows exponentially.
27RIy(gR) C. Combi -
m(q,R)=p: 13 . Combined dynamics

Combining inertial and diffusive processes, the linearized
Details of the derivation of Eqg12) and (13) are given in  (classical equation of motion for the surface modes is
the Appendix. Combining Eq$3) and (12) yields a Hamil-

tonian for surface phonons, with frequencies 7°b(q,t) () ab(q,t)
o2 at

_ a(q;Ro,T)
w(0;Ro, T)= 1/ MRy (14 From theq dependence of Eq$14) and (20), one sees that

o I'(g)/w(q)—0 asq—0, indicating that diffusive processes
Generically,w(q)>q asq—0 due to theg-dependence of can be neglected in this limit, at least for small deformations.
m(q,Ry). Equation (14) thus describesacoustic surface In general, the relative time scales for inertial and diffusive
phonons On the stability boundanA=0, one hasw(q) dynamics depend on the value Df;. For this quasi-one-
xq? as q—0. For A<O, ®w is imaginary, and long- dimensional diffusion problem, one can estima
wavelength modes grow exponentialsee Fig. %)]. ~(wp/ps) exp (—Es/kgT), wherewp, is the Debye frequency

+w?(q)b(g,t)=0. (21

165414-4
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andE; is the activation energy for surface diffusion, which is 0.8 L B L T L
comparable to the energy of a single bond in the solid. With i N T=300K ]
this estimate, one has(q)>I'(q) for all g, indicating that 0.6 = 7
the surface phonons are underdamped. g . B |
The picture of the surface dynamics (ofietgstable metal Ml |
nanowires which emerges from this analysis is that there is a 02 M M
separation of time scales: on short time scales, the surface i
oscillates rapidly about the cylindrical equilibrium shape, o ! | Y 1 A L L s
while, on much longer time scales, surface atoms diffuse R 4 6 8 10
irreversibly. kR
FIG. 3. Root-mean-square fluctuations of the radius of meta-
V. CRITICAL SURFACE FLUCTUATIONS stable sodium nanowires of length=10R,. SR is undefined for
unstable wires within the harmonic approximation, and is not

In the harmonic approximatiofEgs. (3) and (12)], the
total free energy)2(R,,T) of the nanowire is given by the
free energy of the unperturbed cylinder plus the Helmholtz
free energy of the surface phonons, kgT

5R2|A(RO,T):O: — - L (25
N A7°(oRy—y)
Q=Up+ 2, [ho,+2kgTIn(1—e Aton)], (22
n=1

shown.

plus a small quantum correctiodR thus scales ak*? on
the stability boundary, like the finite-size scaling at the
roughening transition of a planar interfateAt T=0, SR
remains small and approximately independent_obn the

where w,=w((d,;Rq,T) and B=1/kgT. The equilibrium
tension in the wire is

90 U, stability boundary. The absence of critical surface fluctua-
== IJF OF phonor (23 f[ions atT=0 is also consistent with the behavior of planar
interfaces?
where the main contribution- 9U,/dL was previously cal- The stability boundanA(Ry,T)=0 defines amultiple-

culated in Refs. 9,10, and 30, ad# yyononis @ small correc-  valued critical temperaturd .= T¢(Ro) as a function of the
tion that is singular at the stability boundaries, where thenean radius, or alternatively a critical mean radigs
surface modes become soft. =R.(T) as a function of temperatufeee Fig. 1L Within the

The softening of the surface modes on the stability boundharmonic approximationgR grows with an exponent
aries leads to critical surface fluctuations. Given the stiffnesss —1/4 as Ry,—R. or T—T., as expected from the
[Eg. (5)] and frequencyEg. (14)] of the surface modes, the Ornstein-Zernicke fluctuation theory. This critical behavior,
mean-square thermal fluctuatio?R? of the radius of the which is cut off whensR approaches the value given in
nanowire can be calculated in the usual Wy, Eq. (25), is illustrated in Fig. 3.

" One can also study the time dependéhac# SR for an
- o 1 hoy2f(w,)+1] initially cylindrical wire undergoing thermal fluctuations.
SR={(R-R%) = [nzl a(qn;Ro, T) (24) Using the classical equipartition theorem, for each mode we

have

where f(w)=[ exp (Bhw)—1] ! is the Planck distribution.
Note that, aside from a small quantum correction, the mag- 2
nitude of the surface fluctuations follows from the equiparti- (|b(an ,t)|2>=

tion theorem applied to Eq3), and is thus largely indepen-
dent of the nature of the surface dynamics—whether inerti

kBT S|n2((,0nt)
L a(gn;Ro,T)’

(26)

a\llvhere sif (wyt) describes the standing capillary waves. The

or d|_ffu5|ve. . . surface fluctuations then grow as a function of time accord-
Figure 3 showsSR for nanowires of finite length at room ing to

temperature as a function of their mean radius. The ionic

mass and Fermi temperature were taken to be that of sodium. N )

Within a metastable regiorkeSR<1 and is approximately SR2(t) = 4kgT D SIN? (wpt) 27
independent ofL, indicating that such wires are nearly L 7= a(q,;Re,T)"

atomically smooth at this temperature. The zero-point motion

contributes roughly 50% of the surface fluctuation within aOn the stability boundarieA(Ry,T)=0, the dispersion re-
stable region for sodium nanowires &t=300 K. With in-  lation w(q)~qg? and one findssR(t) ~t** asymptotically
creasing temperature, the thermal contributionS®grows  for times w; '>t>wy*. The dynamic exponerz=1/4 dif-
proportional to\/T, according to the equipartition theorem. fers from that of a planar interfatedue to the different
Note that the harmonic approximation is expected to breaklispersion relation for the surface modes.

down whenkg6R~1. However, all these scaling relations hold only in a limited
The surface fluctuatio®R exhibits sharp peaks at the range, since the asymptotic limfiR— characterizing the
stability boundaries, reaching the value roughening transitidlf~*?is unphysical in nanowires, due to

165414-5
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FIG. 4. (a) The total entropy per unit length of a nanowire with ) . .
keR,=19 vs temperature. The ionic mass was taken to be that of FIG. 5. (a) The dispersion relation for the surface modes of an

h . unstable nanowire witlk-R;=28.95 atT=0. The ionic mass was
dium.(b) The electron-shell potentid(Ry,T), fi Eq.(6). P00 .
sodium.(b) The electron-shell potential(Ro,T), from Eq. (6) taken to be that of sodiuntb) The potential energy[b(q)] of the

o . - same nanowire for sinusoidal deformations witir 0 andg=q,
their finite radius. On the stability boundary, the surface doe;olzo&F’ respectively. Note that the enertly, of a straight wire

not roughenin a thermodynamic sense, but the nanowirep,s peen subtracted. The different energies of these two modes is
does become inhomogeneous. mainly due to the increased surface energy at figite

VI. REENTRANT BEHAVIOR volume conservation, such a global change is not possible.

_ o . The wire thus undergoes phase separation into thick and thin
Perhaps most interesting is theentrantbehavior occur-  segments?®

ring on the arches and overhangs in the stability diagram

(Fig. 1). For instance, a wire witlkkcRy=19 is metastable

and homogeneous in the temperature intefivak<T<<T.,, VIl UNSTABLE WIRES

with T¢;~0.007Z ¢ and T¢,~0.046T¢ . The surface exhib- Finally, let us discuss the dynamics of unstable wires.
its critical fluctuations asT—TJ; or T—T,, at which  Figure §a) shows the real and imaginary parts of the surface
points the wire makes a transition to an inhomogeneouphonon frequency versus wavevector for a typical unstable
phase. The transition dt, is conventional, in the sense that wire. One modéb(q,,,t) grows exponentially faster than all
the inhomogeneous phase is the high-entropy phase. Howthers in the harmonic approximation, and thus may be ex-
ever, the inhomogeneous phase belw haslower entropy  pected to dominate. For a single Fourier comporixia,),

than the homogeneous phase abdye Figure 4a) shows the potential energy[b(q.,)] of the nanowire can be evalu-
the total entropys= —d€2/JT of the nanowire as a function ated for arbitrarily largeb using semiclassical perturbation

of temperature, including both electron and phonon contributheory. U may be expanded semiclassically'&s
tions, where() is given by Eq.(22). The electronic entropy

is regular at the critical points, but the phonon entropy is U=uV+oS— yL+ dU. (29

singular in the harmonic approximation, due to the emer-

gence of soft surface modes. The singular contribution to th&he volumeV, surface are&, and integrated mean curva-

phonon entropy is ture C of the nanowire can be calculated for arbitrary defor-

mations by simple geometric considerations. Using semiclas-

90(dy:Ry.T) sical perturbation theo8?~*° the electron-shell correction

(28) 60U can again be expressed in terms of the classical periodic
orbits of a disk billiard, leading to an expression similar to

Eq. (6):
indicating that the softening of a phonon mode with decreas- a-©

ing temperature indeed leads to a decrease in entropy. o  w

To understand the counterintuitive behaviorTag, it is w: ﬁ 2 2 M
useful to consider the electron-shell correctidrio the en- L T Ww=1v=2w p2L,,
ergy of the wire, shown in Fig. (). Above T.;, V has a

h
Seind Ro, )=~ 2 flon)——7——

single broad minimum ned-R,=19, but as the tempera- || 1+ @) c0S(0,,)Jo( By

ture is lowered, and the fine structure in the shell potential Ro o0k Fow
emerges, this single minimum splits into two minima at 2b

keRpo=18.75 and 19.2. To lower its free energy, the system _ 2b(Am) Sin(0,,)1( by (30)
would like to fall into one of these two minima, but due to Ro owIER P |
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where 0,w=KkeL,w(1+b(0)/Ry)—3v=/2, ¢,,  evant for nanowires made of monovalent metals, especially
=2keL,wb(am)/Rp, J; is theith order Bessel function, and the alkali metals and gold, for which there is clear experi-
b(0) is related tob(q,,) by Eq.(2). The result is shown in mental evidence of electron-shell effetts®!® Moreover,

Fig. 5(b). Although the wire is unstable to breakup under athis simple model may provide qualitative insight into the
hypothetical long-wavelength perturbation, the energy of thegenericsurface properties of metal nanowires, which could
fastest growing mode reaches a minimum at a finite ampliguide investigations of more realistic, material-specific mod-
tude, suggesting that the surface deformasaturatesand  els.

that the wire does not break up, but rather necks down to the

next stable radius. A similar scenario is predicted under the ACKNOWLEDGMENTS
diffusive dynamics of Eq(19). An explicit nonlinear dy- ) ) , .
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The stability and surface dynamics of metal nanowires

were investigated in a continuum approach, including APPENDIX: IONIC KINETIC ENERGY

electron-shell effects. A thermodynamic phase diagram for ) o

jellium nanowires was derived, which predicts that cylindri- = Heré we present some details of the derivation of expres-

cal wires with certain “magic” conductance values are stableSion (12) for the kinetic energy of the ions. Inserting H§)

with respect to small perturbations up to remarkably highinto the first line of Eq(12) and performing the integral,

temperatures. On the stability boundary, the surface exhibitdn€ obtains

critical fluctuations, and the nanowire becomes inhomoge- Ro

neous. Both surface phonons and surface self-diffusion ok = 7p,L >, J rdr[gal6°(dar) + a3l 5(dar) 1| d(dn, ).

atoms were included in the linearized surface dynamics. It n Jo

was found that inertial dynamig¢phonons always dominate (A1)

the long-wavelength behavior, including the critical points.ysing the relatior j(x) =1,(x) and the identity

(It must be emphasized, however, that this conclusion holds

only for small perturbations of the surface. The irreversible

diffusion of surface atoms is undoubtedly crucial for large- d—x[xlm(x)lr’n(x)]:x

scale surface deformatiofd. An interesting reentrant be-

havior was predicted, in which a Straight wire is stabilized atthe radial integra| in Eq(Al) may be performed’ |eading to

intermediate temperatures, but undergoes phase separatigi: result

into thick and thin segments as the temperature is lowered.

Finally, for unstable wires, the surface deformation was

found to grow exponentially, dominated by a single Fourier K=mpiL 2 GnRolo(dnR0)11(GaRo)|d(aln) |2

component, and to saturate at a finite amplitude, indicating n=-N (A3)

that unstable wires may not break, but rather neck down to

the next stable radius. Finally, eliminatingd(q,,t) from Eq. (A3) using relation

The results presented in this paper should be directly rel11), one obtains the second line of H32).

VIIl. CONCLUSIONS

2

2p |14 2 (A2)
m 2 mj?
X

N
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