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How to Measure the Spreading Width for the Decay of Superdeformed Nuclei

D. M. Cardamone, C. A. Stafford, and B. R. Barrett
Physics Department, P.O. Box 210081, University of Arizona, Tucson, Arizona 85721, USA

(Received 8 April 2003; published 3 September 2003)
102502-1
A new expression for the branching ratio for the decay via the E1 process in the normal-deformed
band of superdeformed nuclei is given within a simple two-level model. Using this expression, the
spreading or tunneling width �# for superdeformed decay can be expressed entirely in terms of
experimentally known quantities. We show how to determine the tunneling matrix element V from
the measured value of �# and a statistical model of the energy levels. The accuracy of the two-level
approximation is verified by considering the effects of the other normal-deformed states.
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FIG. 1. Schematic diagram of the two-level problem. V is the
tunneling matrix element connecting the two states.
Electromagnetic decay within each band gives the states their
where
finite widths �N and �S. "S and "N are the energies of the two
levels in the absence of V.
Since the first discovery of superdeformation in 152Dy
[1], one of the principal challenges has been to develop a
consistent theory regarding the decay-out mechanism of
the superdeformed (SD) rotational band into the normal-
deformed (ND) band. Although much experimental
progress has been made since this first discovery, e.g.,
Lauritsen et al. [2] and references therein, no consistent
theory has been achieved for this decay-out process, and,
in fact, considerable confusion still exists regarding the
application of the current theoretical interpretations. The
purpose of this Letter is to report on new theoretical
developments, which permit a direct determination of
the spreading (or tunneling) width for decay out of the
SD band in nuclei in terms of experimental quantities
and, thereby, to obtain the magnitude of the tunneling
matrix element.

In an earlier publication [3], two of us presented a
simple two-level model to explain the decay out of the
SD band in nuclei. Employing a retarded Green’s function
approach, we obtained an exact solution for the branching
ratio, FN, for decay via the E1 process in the ND band, in
terms of the decay widths �S and �N in the SD and ND
potential wells, respectively; V, the tunneling matrix
element connecting the SD state with the ND state, i.e.,
the state with which it mixes most strongly; and � �
"N � "S, the difference between the unperturbed energies
of these two states (see Fig. 1 for a graphical representa-
tion of these quantities). Our result yielded

FN �
�1� �N=�S�V

2

�2 � ���2�1� 4V2=�N�S�
; (1)

where ��� � ��S � �N�=2 and V is taken to be positive
definite without loss of generality.

We have recently observed that Eq. (1) can also be
rewritten in the form

FN �
�N�

#=��N � �#�

�S � �N�
#=��N � �#�

; (2)
0031-9007=03=91(10)=102502(4)$20.00 
�# �
2 ���V2

�2 � ���2
(3)

is the correct expression from Fermi’s golden rule for the
spreading (or tunneling) width [3]. Equation (2) clearly
shows that decay into the ND band is a two-step process,
and that �# is a real, physical rate, not a mere theoretical
construct. Note that

�# � 2	hV2i=DN; (4)

as was employed by Vigezzi et al. [4]. In Eq. (4), hV2i is
the mean square of the coupling matrix elements con-
necting the SD and ND states and DN is the average
spacing of the ND states. In fact, Eq. (4) gives the average
spreading width over a flat distribution in � [3], which
can deviate drastically from the exact value given by
Eq. (3).

Importantly, �#, as given by Eq. (3), is a measurable
quantity, which can be determined from Eq. (2):

�# �
FN�N�S

�N � FN��N � �S�
: (5)

In our Table I, we have used Eq. (5) to determine �# from
the values of FN , �S, and �N given in Ref. [2] (Table I).
Our model gives values differing by 3 to 5 orders of
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FIG. 2. Probability distributions for the two ND levels brack-
eting the SD level of interest, from Eqs. (9) and (14). Note that
the mean nearest-neighbor spacing is hj�1ji � DN=4, while the
mean spacing of the next-nearest neighbor is hj�2ji � 3DN=4.

TABLE I. Tunneling widths �# extracted from Eq. (5) com-
pared with the results given in Table I of Ref. [2] (denoted
by �#�2�). FN 
 Pout, �S, �N , and DN are the same as those in
Table I of Ref. [2]. The spin values of the decaying states are
given in parentheses.

FN �S �N DN �# �#�2�

Nucleus 
 Pout (meV) (meV) (eV) (meV) (meV)
152Dy�28� 0.40 10.0 17 220 11 41000
152Dy�26� 0.81 7.0 17 194 �40 220 000
194Hg�12� 0.40 0.108 21 344 0.072 560
194Hg�10� 0.97 0.046 20 493 1.6 37 000
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magnitude from those calculated in Ref. [2] using the
model of Ref. [4]. This radical difference is due to the
new and physically more consistent definition of �# pre-
sented here.

It should be noted that we obtain a negative value for �#

in 152Dy with I � 26. This is, of course, physically im-
possible: �# is a positive definite quantity. Equation (5)
therefore requires

FN <
�N

�N � �S
: (6)

Experimental results in which the inequality (6) is vio-
lated may indicate that the experimentally measured
value of FN is too large or that the SD state is mixing
with a second ND level, since our result is obtained for
mixing with only one ND state. At the present time,
however, uncertainties in the known values of �N and
�S, which are of the order of 100% for �N and of the
order of 10% for �S, or more, mean that �# cannot be
meaningfully determined in cases such as 152Dy�I � 26�.

In order to determine the tunneling matrix element V
from �# via Eq. (3), we must know �, which generally is
not experimentally known. We therefore compute the
expected value for � based on the assumption that the
states to which the SD state decays in the ND well are
distributed according to a Gaussian orthogonal ensemble
(GOE). In the GOE, the probable spacing between levels is
given by the distribution [5]

P�s� �
	
2
se�	s2=4; (7)

where s is the spacing in units of DN .
In the absence of tunneling (V � 0), the energy spectra

of the ND and SD wells are uncorrelated. Given a spacing
sDN between the nearest ND levels above and below the
decaying SD level, � is given by the rectangular proba-
bility distribution

P s��� �
1

sDN
�

�
s
2
�

j�j

DN

�
: (8)

Here � is the Heaviside step function, which simply
ensures that � is the nearest neighbor. The probability
102502-2
distribution for � is then

P ��� �
Z 1

0
P s���P�s�ds �

	
2DN

erfc

� ����
	

p j�j

DN

�
; (9)

where erfc�x� is the complementary error function.
Figure 2 shows P ���DN plotted as a function of �=DN.
From Eq. (9), it is easy to compute the average detuning
hj�ji � DN=4.

Our ultimate goal is to find the probability distribution
P �V� for given values of �#, ���, and DN , which in general is
given by P �V� � 2P ���j d�dV j. From Eq. (3) we can obtain
j�j as a function of V,

j�j �

��������������������������������
2 ���

�#

�
V2 �

�# ���

2

�s
: (10)

V obviously has a lower bound of Vmin �
�����������
1
2 �

# ���
q

due to
the requirement that j�j be real.

Computing P �V� for the allowed region, we find

P �V � Vmin� �
2 ���V	

�#j�jDN
erfc

� ����
	

p j�j

DN

�
; (11)

where j�j is given by Eq. (10). The average value of V is

hVi �

������
�#

2 ���

s �
DN

4
�O

� ���2

DN

��
: (12)

Equation (11) is a central result, since it represents the
maximal information we can have about V without prior
knowledge of the shape of the potential. Earlier attempts
to consider a statistical theory of SD decay out [4,6]
focused on average values of �# and FN . As shown already
in Ref. [4] (see also Refs. [3,7]), however, the calculated
fluctuations in FN are much larger than the mean,
indicating that the average value has little meaning for
comparison to experiment. Given the experimentally
measured branching ratio FN , on the other hand, our
approach allows the essential parameters � and V to be
determined, in the sense of ‘‘sharp’’ probability distribu-
tions whose typical values are comparable to the mean.
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Thus far we have treated only a two-level model of the
superdeformed decay-out process. It is reasonable to ask
what effect the inclusion of more ND states could have.
As a first step, we include the next-nearest-neighbor state
in the ND well.

We can again turn to the assumption of the GOE in
order to find typical values for �1 and �2, the energies of
the nearest- and next-nearest-neighbor states, respec-
tively. P ��1� is simply the P ��� given by Eq. (9). The
calculation of P ��2� is similar to that for P ��1�, but we
must now concern ourselves with the question of whether
�1 and �2 have the same or opposite signs.

In all cases of physical interest, we find that for a given
spacing s, the correction to the two-state result necessi-
tated by the inclusion of a third level is larger when the
two ND levels bracket the SD level. This is quite natural,
since Eq. (7) requires that the next-nearest ND level in
this configuration lie on average 40% closer to the decay-
ing SD state than it would if the nearest two ND levels lie
on the same side of the SD level. Consideration of the case
in which �1 and �2 have the same sign, then, only
decreases the necessary correction. Since our goal is to
set a reasonable upper bound on this quantity, we assume
the ND levels lie on opposite sides of the SD level. Decays
for which this is not true will in general conform to the
two-state approximation with even greater accuracy.

Based on this assumption, we can construct a density
function for �2 similar to Eq. (8),

P s��2� �
1

sDN
�

�
j�2j

DN
�

s
2

�
�

�
s�

j�2j

DN

�
: (13)

Together with Eq. (7), this yields a distribution for �2,

P ��2� �
	

2DN

�
erf�

����
	

p
j�2j� � erf

� ����
	

p

2
j�2j

��
: (14)

This expression for P ��2� is illustrated by Fig. 2. Its
average detuning is hj�2ji � 3DN=4.

Having computed the average values of �1, �2, and V,
we are now in a position to begin to see the effect of a
second ND level. In general, Eq. (1) would suggest that
the contribution to the total branching ratio of a second
level is substantially less than that of the nearest neighbor.
Since Eq. (1) was derived in the context of only one ND
level, however, we ought to seek a more rigorous theory
for the three-state branching ratio. In particular, we
should expect that effects such as competition and inter-
ference will play a role in the exact result.

The Hamiltonian for the three-state system can be
taken to be the sum of two parts, H0, which represents
the independent SD and ND wells, and V̂V, which mixes
the states of the two wells. H0 can be written

H0 �
X
i

"ic
y
i ci �HEM; (15)

where the sum on i runs over S, N1, and N2, ci is the
102502-3
annihilation operator for state i, and HEM contains
the coupling to the electromagnetic field which gives
the states their nonzero widths. Since they occur by the
same decay process, we assume the widths of the ND
states are equal, i.e., �N1 � �N2 � �N .

Taking V̂V as a perturbation, it is a trivial exercise to use
Dyson’s equation to construct the retarded Green’s func-
tion of the system. The result, exact to all orders in V̂V, is
given in the jSi, jN1i, jN2i basis by

G�1�E� �

0
BB@
E� i �S

2 �V1 �V2

�V1 E� �1 � i �N
2 0

�V2 0 E� �2 � i �N
2

1
CCA;

(16)

where V1 and V2 may be chosen positive without loss
of generality. In the following, we assume further that
V1 � V2.

The branching ratios of the full three-state system can
now be computed from Parseval’s theorem

Fi � �i

Z 1

�1

dE
2	

jhSjG�E�jiij2; (17)

where i � S;N1; N2. These integrals can be done analyti-
cally by Cauchy integration, but the results are algebrai-
cally complicated. It is sufficient for our purposes to
compute them numerically.

With �1 and �2 determined by their probability dis-
tributions, the only remaining parameters in the three-
state problem are �S, �N , V, and DN . In all cases of
physical interest, however, �S;�N � V;DN , so we can
restrict the relevant parameter space by varying only the
combinations of parameters �S=�N and V=DN separately.
The corrections to the branching ratios required by such a
restriction are of order �N=V.

Furthermore, the order of �S=�N is determined by the
mass region of the nucleus (see Table I). In the results that
follow, variation of this parameter over reasonable values
does not significantly impact the necessary correction to
the two-state result.

Figures 3 and 4 show comparisons of the two- and
three-state branching ratios for the A � 190 and A �
150 mass regions, respectively. These figures demonstrate
that in cases of physical interest, the correction to the
two-state system due to the presence of a third level is
relatively small. In the A � 190 region, in particular, we
find that 0:9 & F�2�

N =F�3�
N � 1, where the superscripts on

the branching ratios indicate the number of states in-
cluded in their calculation. In the A � 150 region, we
find that 0:7<F�2�

N =F�3�
N < 1. The increased importance

of additional levels in the A � 150 region arises because
the typical tunneling matrix elements at decay out are
significantly larger, which follows from Eq. (1) and the
relative sizes of �S and �N in the two mass regions.
Constructive interference between the two ND levels,
102502-3



FIG. 4. Plot of ND branching ratios calculated in the two-
and three-state models with parameters relevant to the A � 150
mass region. The energy levels were taken to lie at their mean
detunings, and constant values of �S � �N and ���=DN � 10�4

were used. These orders of magnitude are consistent with
Table I. The notation for branching ratios used here is defined
in the caption of Fig. 3.

FIG. 3. Plot of ND branching ratios calculated in the two-
(F�2�

N ) and three-state (F�3�
N ) models with parameters relevant to

the A � 190 mass region. The curves labeled F�3�
N1 and F�3�

N2
represent the branching ratios for the individual states of the
three-level model, which sum to the total branching ratio. The
energy levels were taken to lie at their mean detunings, and
constant values of �S=�N � 10�3 and ���=DN � 10�4 were used.
These orders of magnitude are consistent with Table I.
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plainly visible in Fig. 4 where F�3�
N exhibits a distinct

maximum for V �DN=2, can also enhance the impor-
tance of additional ND levels.

In the 190 mass region, however, quantum interference
effects are seen to be negligible, and this approach can be
extended to set an approximate upper bound on the total
error incurred by ignoring all of the ND states except the
nearest neighbor. It is clear from Eq. (1) that, neglecting
quantum interference effects, a level’s branching ratio is
approximately proportional to ��2. Assuming that each
level in the infinite ND band lies at its average detuning,
we can write the total n-level branching ratio as

F�n�
N �

Xn�1

k�1

F�2�
N �DN=4�2

��k�
2 �

Xn�1

k�1

F�2�
N �DN=4�2

��2k� 1� DN
4 �

2
: (18)

We thus have the result

F�1�
N �

X1
k�1

F�2�
N

�2k� 1�2
�

	2

8
F�2�
N : (19)

In the 190 mass region, then, the expected correction is no
more than about 23% of F�2�

N .
The three-state results, together with the arguments of

Eqs. (18) and (19), demonstrate that the two-state model
is sufficient to describe the dominant decay-out process of
SD nuclei. Within the two-state model, we have shown
that the decay out of an SD level via E1 processes in the
102502-4
ND band is a two-step process, whose branching ratio (2)
is expressed in terms of three measurable rates, �S, �N,
and �#. We have also shown how to determine the tunnel-
ing matrix element V [Eqs. (11) and (12)] from the mea-
sured value of �# and a statistical model of the ND band.
It is hoped that these results will help clarify the nature of
the decay-out process in SD nuclei.
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