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We develop a generalized grand canonical potential for the ballistic nonequilibrium electron distribution in
a metal nanowire with a finite applied bias voltage. Coulomb interactions are treated in the self-consistent
Hartree approximation, in order to ensure gauge invariance. Using this formalism, we investigate the stability
and cohesive properties of metallic nanocylinders at ultrahigh current densities. A linear stability analysis
shows that metal nanowires with certainmagic conductance valuescan support current densities up to
1011 A/cm2, which would vaporize a macroscopic piece of metal. This finding is consistent with experimental
studies of gold nanowires. Interestingly, our analysis also reveals the existence of reentrant stability zones—
geometries that are stable only under an applied bias.
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I. INTRODUCTION

Metal nanowires have been the subject of many experi-
mental and theoretical studies, both for their unique proper-
ties and potential applicationsssee Ref. 1 for a review of the
fieldd. One of the most remarkable properties of metal nano-
wires is their ability to support extremely high current den-
sities without breaking apart or vaporizing.2–8 For noble met-
als, experiments can be carried out in air, and the first few
peaks in conductance histograms can withstand applied volt-
ages as high as 1 volt, and even 2 volts for the first peak,
corresponding to one conductance quantumG0=2e2/h. Let
us estimate the corresponding current density: For a ballistic
metallic conductor in the form of a cylinder of radiusR, the
electrical conductanceG is given approximately by the Shar-
vin formula G.G0skFR/2d2, where kF is the Fermi wave
vector. Therefore the current density at applied voltageV is

j =
GV

pR2 .
kF

2G0V

4p
=

3nevF

8
3

eV

«F
, s1d

wheren is the number density of conduction electrons,vF is
the Fermi velocity, and«F is the Fermi energy. For an ap-
plied bias of a few volts, the factoreV/«F is of order unity,
and the current density is of order 1011 A/cm2. Such high
current densities would vaporize a macroscopic wire, thus
prompting questions on the reason for the remarkable stabil-
ity of metal nanowires.

The first part of the answer to this question is that metal
nanowires are typically shorter than the mean-free pathLin
for inelastic scattering, so that the conduction electrons can
propagate through the wire without generating excitations
such as phonons8 that heat the wire. Instead, most of the
dissipation takes place in the macroscopic contacts for the
outgoing electrons. However, the absence of equilibration of
the electron distribution within the nanowire raises another,
more fundamental, question: What is the effect of a highly
nonequilibrium electron distribution on the stability of a
metal nanowire, given that the conduction electrons play a
dominant role in the cohesion of metals? That is the question
to which the present paper is devoted.

Under a finite bias, the scattering states of right- and left-
moving electrons in a nanowire are populated differently,
even if there is no inelastic scattering within the wire. An
adequate treatment of the electron-electron interactions is
crucial to correctly describe this nonequilibrium electron dis-
tribution. Some studies of transport9,10 and cohesion11 in
metal nanowires at finite bias did not include electron-
electron interactions, so that the calculated transport and en-
ergetics depended separately on both the left and right
chemical potentialsm+ and m−, thus violating thegauge in-
variancecondition: The calculated physical quantities should
depend only on the voltage differenceeV=m+−m−, and
should be invariant under a global shift of the electrochemi-
cal potential, since the total charge is conserved.12 A self-
consistent formulation of transport and cohesion at finite bias
has recently been developed based onab initio and tight-
binding methods.7,13–16 These computational techniques are
particularly well-suited to the study of atomic chains, but can
become intractable for larger nanostructures. An analytical
approach to this problem is needed to study the interesting
mesoscopic effects17,18 which occur in systems intermediate
in size between the macroscopic and the atomic scale.

In this paper, we extend our continuum model18–26 of
metal nanowires to treat the ballistic nonequilibrium electron
distribution at finite bias. Our model provides a generic de-
scription of nanostructures formed of simple, monovalent
metals. It is especially suitable for alkali metals, but is also
appropriate to describe quantum shell effects due to the
conduction-bands electrons in noble metals. For a fuller dis-
cussion of the domain of applicability of our continuum ap-
proach, see Ref. 22. In the present work, Coulomb interac-
tions are included in the self-consistent Hartree
approximation, in order to ensure gauge invariance.

For a system out of equilibrium, there is no general way
to define a thermodynamic free energy. By assuming that
the electron motion is ballistic, however, the energetics of the
biased system can still be described by a nonequilibrium
free energy,27 which can be used to study the stability
and cohesion of nanowires at finite bias. We find that metal
nanocylinders with certainmagic conductance values,
G/G0=1,3,6,12,17,23,34,42,…, can support current densities
up to 1011 A/cm2. Our finding is consistent with experimen-
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tal results for gold nanocontacts2–7 sG,5G0d and atomic
chains8 sG.G0d, but implies that the magic wires with
G.5G0 are also extremely robust. Furthermore, we predict
a number of nanowire geometries that are stable only under
an applied bias.

This paper is organized as follows: In Sec. II, we develop
a formalism to describe the nonequilibrium thermodynamics
of a mesoscopic conductor at finite bias. In Sec. III, we apply
this formalism to quasi-one-dimensional conductors, and ob-
tain gauge-invariant results for the Hartree potential, grand
canonical potential, and cohesive force of metal nanocylin-
ders at finite bias. In Sec. IV, we perform a linear stability
analysis of metal nanocylinders at finite bias, the principal
result of the paper. Section V presents some discussion and
conclusions. Details of the stability calculation are presented
in the Appendix.

II. SCATTERING APPROACH TO NONEQUILIBRIUM
THERMODYNAMICS

We consider a metallic mesoscopic conductor connected
to two reservoirs at common temperatureT;skBbd−1, with
respective electrochemical potentialsm±=«F+eV±, where«F
is the chemical potential for electrons in the reservoirs at
equilibrium,e is the electron charge, andV+s−d is the voltage
at the leftsrightd reservoir. Because the screening of electric
fields in metal nanowires withG.G0 is quite good, the pres-
ence of additional nearby conductorsssuch as a ground
planed has a negligible effect on the transport and energetics
of the system, and is therefore not considered.

While there is no general prescription for constructing a
free energy for such a system out of equilibrium, it is pos-
sible to do so based on scattering theory27 if inelastic scat-
tering can be neglected, i.e., if the lengthL of the conductor
satisfiesL!Lin. In that case, scattering states within the con-
ductor populated by the leftsrightd reservoir form a sub-
system in equilibrium with that reservoir. Dissipation only
takes place for the outgoing electrons within the reservoir
where they are absorbed. Treating electron-electron interac-
tions in mean-field theory, it is then possible to define a
nonequilibrium grand canonical potentialV of the system,

Vfm+,m−,UsrWdg = V0fm+,m−,UsrWdg

−
1

2
E d3rfr−srWd + r+srWdgUsrWd, s2d

where V0 describes independent electrons moving in the
mean fieldU, r± are the number densities of electronss−d
and of ionic background chargess+d, and the second term on
the right-hand sidesrhsd of Eq. s2d corrects for double-
counting of interactions inV0. Since the electrons injected
from the left and right reservoirs are independent, aside from
their interaction with the mean field,V0 is given by the sum

V0fm+,m−,UsrWdg = o
a=±

Vafma,UsrWdg, s3d

where

Vafma,Ug = − kBTE dE gasEdlns1 + e−bsE−madd s4d

is the grand canonical potential of independent electrons
moving in the potentialU, in equilibrium with reservoira,
and theinjectivity27–29

gasEd =
1

4pi
o
g

TrSSga
† ]Sga

]E
−

]Sga
†

]E
SgaD s5d

is the partial density of states of electrons injected by reser-
voir a. HereSga=SgafE,UsrWdg is the submatrix of the elec-
tronic scattering matrix describing electrons injected from
reservoira and absorbed by reservoirg, and is a functional
of the mean-field potential.

The number densityr−srWd of the conduction electrons is

r−srWd =
dV0

dUsrWd
= o

a=±
E dE gasrW,EdfsE,mad, s6d

where fsE,md=h1+expfbsE−mdgj−1 is the Fermi-Dirac dis-
tribution function, and

gasrW,Ed = −
1

4pi
o
g

TrSSga
† dSga

dUsrWd
−

dSga
†

dUsrWd
SgaD s7d

is thelocal partial density of states27–29for electrons injected
from reservoira. In Eqs. s6d and s7d, d /dUsrWd denotes the
functional derivative.

The mean-field potentialU is determined in the Hartree
approximation by

UsrWd =E d3r8VsrW − rW8ddrsrW8d, s8d

where drsrWd=r−srWd−r+srWd is the local charge imbalance in
the conductor andVsrWd=e2/ urWu is the Coulomb potential. The
Hartree potential depends on the electrochemical potentials
of the left and right reservoirs.

The whole formalisms2d–s7d is very similar for any
mean-field potential that is a local functional of the electron
density,13 but we choose to work with the Hartree potential
for simplicity. The exchange and correlation contributions to
the mean field are taken into account in the present analysis
only macroscopically,22 by fixing the background densityr+
to its bulk value. Throughout this paper, we assumer+
=kF

3 /3p2=const within the conductorsjellium modeld.

III. QUASI-ONE-DIMENSIONAL LIMIT

Equationss2d–s8d provide a set of equations at finite bias
that must be solved self-consistently. For a conductor of ar-
bitrary shape, these equations may be quite difficult to solve.
We therefore restrict our consideration in the following to
quasi-one-dimensional nanoconductors, with axial symmetry
about thez axis. The shape of the conductor is specified by
its radiusRszd as a function ofz, and we assumeRszd!L.
For such a quasi-one-dimensional geometry, we can approxi-
mately integrate out the transverse coordinates, replacing the
Coulomb potential by an effective one-dimensional potential
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Vsz,z8d =
e2

ssz− z8d2 + sh/2dfR2szd + R2sz8dgd1/2, s9d

whereh is a parameter of order unity. The longitudinal po-
tential Vsz,z8d must be supplemented with a transverse con-
finement potential, which we take as a hard wall at the sur-
face of the wire.30–33This boundary condition necessitates a
careful treatment of surface charges, as discussed below. As a
consistency check, our final results for the stability and co-
hesion are independent of the value ofh chosen in the effec-
tive Coulomb potential.

With this form of the Coulomb potential, the mean field
Uszd becomes a function of the longitudinal coordinate only,
and Eqs.s2d–s8d reduce to a series of one-dimensional inte-
gral equations, which are much more tractable. The grand
canonical potential of a quasi cylindrical wire of lengthL is

Vfhm±j,Rszd,Uszdg = V0fhm±j,Rszd,Uszdg

−
1

2
E

0

L

dzfr−szd + r+szdgUszd,

s10d

where V0 is still given by Eqs. s3d–s5d, with Va

=Vafma ,Rszd ,Uszdg. Here

r−szd =
dV0

dUszd
= o

a=±
E dE gasz,EdfsE,mad s11d

is the linear density of conduction electrons, where

gasz,Ed = −
1

4pi
o
g

TrSSga
† dSga

dUszd
−

dSga
†

dUszd
SgaD s12d

is the injectivity of a circular slice of the conductor atz. The
scattering matrixS=SfE,Rszd ,Uszdg is now a functional of
Rszd and Uszd. In order to compensate for the depletion of
surface electrons due to the hard-wall boundary condition,
the linear density of positive background charges is taken to
be

r+szd =
kF

3Rszd2

3p
−

kF
2RszdÎ1 + Rz

2szd
4

+
kF

3p
S1 −

RszdRzzszd
Î1 + Rz

2szd
D ,

s13d

where Rzszd=dRszd /dz and Rzzszd=d2Rszd /dz2. The second
term on the rhs of Eq.s13d corresponds to the well-known
surface correction in the free-electron model.20 The last term
represents an integrated-curvature contribution, which is
found to be a small correction. The prescription given in Eq.
s13d is essentially equivalent to the widely employed practice
of placing the hard-wall boundary at a distanced=3p /8kF
outside the surface of the metal.34

The Hartree potential is

Uszd =E
0

L

dz8Vsz,z8ddrsz8d, s14d

wheredrszd=r−szd−r+szd.
Equations s9d–s14d provide a natural, gauge-invariant,

generalization of thenanoscale free-electron model,18 which

has been successful in describing many equilibrium17,18 and
linear-response35–37 properties of simple metal nanowires, to
the case of nanowires at finite bias. This formalism repre-
sents a considerable simplification compared toab initio
approaches7,13–16or even traditional jellium calculations,32,33

and permits analytical results for the cohesion and stability
of metal nanocylinders at finite bias.

A. Quasicylindrical nanowire without backscattering

Consider a nearly cylindrical nanowire, with radius

Rszd = R0 + ldRszd, s15d

wherel is a small parameter anddRszd is a slowly varying
function. The couplings of the nanowire to the reservoirs are
assumed ideal, so that electrons enter or exit the conductor
without backscattering. For sufficiently smalll, electron
waves partially reflected or transmitted by the small surface
modulation can be neglected, because they give a negligible
contribution to the density of states. The rightsleftd-moving
electrons in the bulk of the wire are thus in equilibrium with
the leftsrightd reservoir. Moreover, the Hartree potentialUszd
varies slowly with z, and can be taken as a shift of the
conduction-band bottom in the adiabatic approximation. The
injectivity therefore simplifies to

gasz,Ed = 1
2gsz,E − Uszdd,

wheregsz,Ed is the local density of states for free electrons
in a circular slice of radiusRszd. Equations4d can be rewrit-
ten as

Vafm,Rszd,Uszdg =
1

2
E

0

L

dzEm−Uszd

dE

3fE − m + UszdggTsz,Ed, s16d

where the integration variableE is no longer the total energy
of an electron, but rather its kinetic energy. HeregTsz,Ed
=−edE8gsz,E8d] fsE−E8 ,0d /]E is a convoluted local den-
sity of states in a slice of the wire, and can be used to obtain
finite-temperature thermodynamic quantities from their zero-
temperature expressions,38 so that Eq.s16d is equivalent to
the usual definition of the grand canonical potentials4d.
Similarly, the linear density of electrons can be written in
terms of the convoluted density of states as

r−szd =
dV0

dUszd
=

1

2o
a=±

Ema−Uszd

dEgTsz,Ed. s17d

The convoluted density of states of a circular slice of the
nanowire can be expressed semiclassically as38 gTsz,Ed
; ḡTsz,Ed+dgTsz,Ed, whereḡT is a smoothly varying func-
tion of the geometry, known as the Weyl term, anddgTsz,Ed
is an oscillatory quantum correction. The temperature depen-
dence of the Weyl term is negligible,ḡT= ḡ3 f1
+OsT/TFd2g, whereTF is the Fermi temperature. The zero-
temperature value is
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ḡsz,Ed =
kF

3 ] Vszd
2p2«F

Î E

«F
−

kF
2 ] Sszd
8p«F

+
kF ] Cszd
6p2«F

Î«F

E
,

s18d

where]Vszd , ]Sszd, and]Cszd are, respectively, the volume,
external surface-area, and external mean-curvature of a slice
of the wire. The fluctuating partdgT can be obtained through
the trace formula21

dgTsz,Ed =
kF

2

2p«F
o
wv

fvwavwsTd
Lvwszd

v2 cosuvwsz,Ed,

s19d

where the sum is over all classical periodic orbitssv ,wd
in a disk billiard38,39of radiusRszd. Here the factorfvw=1 for
v=2w, and 2 otherwise, accounts for the invari-
ance under time-reversal symmetry of some orbits,Lvwszd
=2vRszdsinspw/vd is the length of periodic orbit
sv ,wd, uvwsz,Ed=kFLvwszdÎE/«F−3vp /2, and avwsTd
=tvw/sinhtvw is a temperature-dependent damping factor,
with tvw=pkFLvwT/2TF.

The semiclassical approximation, Eqs.s18d and s19d, al-
lows for an analytical solution for the ballistic nonequilib-
rium electron distribution in a metal nanowire at finite bias.
It also enables us to carry out a linear stability analysis of
metal nanowires at finite bias, with analytical results for the
stability coefficients. Although these calculations could in
principle be carried out using a fully quantum mechanical
solution of the electronic scattering problem, the semiclassi-
cal approximation has been shown24,40 to accurately describe
the long-wavelength surface perturbations that are the limit-
ing factor22 in the stability of long nanowires.

Equationss14d and s17d provide a set of self-consistent
equations to solve for the ballistic nonequilibrium electron
distribution in a quasi-one-dimensional nanoconductor at fi-
nite bias. Once the distributionr− is obtained, the grand ca-
nonical potentialV of the electron gas may be calculated
from Eqs. s10d and s16d. The functional dependence of
VfRszdg yields information on the cohesion18,20 and
stability21,22,24,40of a metal nanowire, as in the equilibrium
case.

B. Solution for a cylindrical nanowire; Hartree potential
and tensile force

For an unperturbed cylinder, the mesoscopic Hartree po-
tential U0 that simultaneously solves Eqs.s14d and s17d is
only a function of the radiusR0, voltageeV=m+−m−, and
temperatureT, and is constant along the wire, neglecting
boundary effects, which are important only within a screen-
ing lengths,kF

−1d of each contact.sThis description is valid
for wires with 1!kFL,kFLin.d U0 is independent of the
choice ofh in the Coulomb interaction, Eq.s9d, and can be
determined by the charge neutrality condition

Q = 1
2efN−sm+ − U0d + N−sm− − U0dg − eN+ = 0, s20d

where 1
2N−sm=m±−U0d= 1

2e0
LdzemdE gTsz,Ed is the number

of right sleftd-moving electrons in the cylindrical wire, and

N+ is the total number of background positive charges. Equa-
tion s20d gives a relation12

U0 = U0
ssdsR0,V,Td + 1

2sm+ + m−d − «F, s21d

whereU0
ssd is calculated with a symmetric voltage dropV+

=−V−= 1
2V. Equations21d guarantees that all physical prop-

erties of the system calculated in the following are just func-
tions of the voltageV, and not ofm+ andm− separately.

Using these expressions, one can solve Eq.s20d for U0 for
a symmetric potential drop,m±=«F± 1

2eV. The solution is
shown in Fig. 1 as a function of radiusR0 at two different
voltages V. In the equilibrium casesV=0d, U0 oscillates
about zero, exhibiting cusps at the subband thresholds, and
increasing in amplitude asR0 decreases, due to the quantum
confinement. Note that in equilibrium,U0→0 as R0→`,
consistent with the well-known behavior of bulk jellium. At
finite bias, each cusp inU0 splits in two, corresponding to the
subband thresholds for left- and right-moving electrons:

m± = «nsR0d + U0sR0,V,Td, s22d

where«nsR0d are the eigenenergies of a disk billiard of radius
R0. This is illustrated in Fig. 1 foreV=0.5«F. Note that in
addition to the splitting, there is a substantial shift of the
peak structure at finite bias.

Using Eq.s10d, the grand canonical potential of a cylinder
is now found to be

VsR0,V,Td = V0fhm±j,R0,U0g − N+U0. s23d

Note thatV is invariant under a global shift of the potential
U0, due to an exact cancellation in the two terms on the rhs
of Eq. s23d. The tensile force in the nanowire provides direct
information about cohesion, and is given by

FsR0,V,Td = − U ]V

]L
U

R0
2L,V,T

.

Figure 2 shows the tensile force of a metal nanocylinder as a
function of its cross section for two different bias voltages.
To facilitate comparison with the stability diagrams in Sec.
IV below, the cross section is plotted in terms of the cor-
rected Sharvin conductance35

FIG. 1. sColor onlined The Hartree potentialU0 for electrons in
a cylindrical nanowire at finite temperatureT=0.008TF, with a sym-
metric potential drop, versus the radiusR0 of the wire.
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GS= G0fskFR0/2d2 − kFR0/2g, s24d

which gives a semiclassical approximation to the electrical
conductance. In Fig. 2,F,0 corresponds totension, while
F.0 corresponds tocompression. As shown below, the
cusps in the cohesive force at the subband thresholds corre-
spond tostructural instabilitiesof the system.

In Fig. 2, the force calculated at zero bias is very similar
to previous results20,41,42 based on the free-electron model,
even though those calculations did not respect the charge
neutralitys20d enforced by Coulomb interactions. The reason
for the good agreement is that the contribution of the Hartree
potential to the energy of the system is asecond-orderme-
soscopic effect at zero bias,20,25 which is essentially negli-
gible for G.3G0. An earlier calculation43 that did invoke
charge neutrality obtained a very different—and incorrect—
result, because the second term on the rhs of Eq.s23d was
omitted, resulting in a double counting of Coulomb interac-
tions.

Figure 2 shows that the cohesive force of a metal nano-
wire can be modulated by several nano-Newtons for a bias of
a few volts. Such a large effect should be observable experi-
mentally using appropriate cantilevers,44–46 although the in-
trinsic behavior might be masked by electrostatic forces in
the external circuit. In contrast to the case atV=0, the Cou-
lomb interactions play an essential role in determining the
cohesive force at finite bias, since the positions of the peaks
depend sensitively on the Hartree potentialU0 of the ballistic
nonequilibrium electron distribution, shown in Fig. 1. The
gauge-invariant result shown in Fig. 2 thus differs substan-
tially from previous results,11 where screening was not
treated self-consistently. Gauge-invariant results for the non-
linear transport through metal nanocylinders will be pre-
sented elsewhere.47

IV. LINEAR STABILITY OF A CYLINDER AT FINITE
VOLTAGE

In this section, we perform a linear stability analysis21,22

for cylindrical nanowires under a finite biasV. Coulomb in-
teractions are included self-consistently using the formalism
of Sec. III. Although the details of the calculation are rather
complicated, the method is conceptually straightforward.

Having found the self-consistent solutions23d for a cylinder,
we perturb the cylinder as in Eq.s15d, and expand the free
energy up to second order in the small parameterl. First, the
self-consistent integral equationss14d ands17d for the ballis-
tic nonequilibrium electron distribution are solved using
first-order perturbation theory inl. Then the free energy is
calculated using Eqs.s10d and s16d.

The radius of the wire is given by Eq.s15d, with a pertur-
bation function

dRszd = o
q

bsqdeiqz, bsqd* = bs− qd.

The surface perturbationldRszd is subject to a constraint
fixing the total number of atoms in the wire. In previous
works, we have considered various constraints,20,24 which
allow one to adjust the surface properties of the wire to
model various materials. The simplest such constraint is vol-
ume conservation, under which the coefficientbs0d is fixed
by

bs0d = −
l

2R0
o
q

ubsqdu2.

Other reasonable constraints do not lead to qualitatively dif-
ferent conclusions.

Within linear response theory, we can expanddrszd
aroundU0 to linear order inUszd−U0, whereU0 is the me-
soscopic Hartree potential for the corresponding unperturbed
cylindrical wire. One gets

drszd . dr0szd −E dz8U dr−szd
dUsz8d

U
U0

U0

+E dz1dz2U dr−szd
dUsz1d

U
U0

Vsz1,z2ddrsz2d, s25d

where Eq.s14d has been used anddr0szd, called the bare
charge imbalance, is defined as

dr0szd =
1

2o
a=±

Ema−U0

dEgTsz,Ed − r+szd. s26d

Now defining the dielectric function

esz1,z2d = dsz1 − z2d −E dz3Udr−sz1d
dUsz3d

U
U0

Vsz3,z2d, s27d

we can rewrite Eq.s25d as

drszd =E dz8e−1sz,z8ddr̄0sz8d, s28d

where e−1 is the inverse dielectric function which satisfies
edz3e−1sz1,z3desz3,z2d=dsz1−z2d, and

dr̄0szd = dr0szd −E dz1U dr−szd
dUsz1d

U
U0

U0. s29d

The functional derivativedr−szd /dUsz8d can be calculated
using Eq.s17d, and is found to be

FIG. 2. sColor onlined Tensile force in a metal nanocylinder
versus cross-sectional area, at two different bias voltages at tem-
peratureT=0.008TF. The cross section is plotted in terms of the
Sharvin conductanceGS, Eq. s24d, and the force is given in units of
«F /lF slF being the Fermi wavelengthd, which is 1.7 nN for Au.

STABILITY OF METAL NANOWIRES AT ULTRAHIGH… PHYSICAL REVIEW B 71, 235404s2005d

235404-5



U dr−szd
dUsz8d

U
U0

= −
dsz− z8d

2 o
a=±

gTsz,ma − U0d.

Now we can expand the nonequilibrium grand canonical
potential s10d as a series inl. In order to do so, we first
expand Eq.s10d aroundU0. Using Eqs.s14d, s17d, s26d, and
s29d, one gets

V = V0fhm±j,Rszd,U0g − U0E
0

L

dzdr̄0szd

+
1

2
E

0

L

dzdz8dr̄0szdṼsz,z8ddr̄0sz8d

+
sU0d2

4 o
a=±

E
0

L

dzgTsz,«ad − N+U0, s30d

where«±=m±−U0, and the screened potentialṼsz,z8d is de-
fined as

Ṽsz,z8d =E dz1Vsz,z1de−1sz1,z8d. s31d

At this point, all quantities have been expressed in terms
of the local density of statesgTsz,Ed and the Coulomb inter-
actionVsz,z8d, whose expansions in series ofl are presented
in the Appendix. In the end, the expansion of the grand ca-
nonical potential as a series inl is found to be

V = VsR0,V,Td + l2Lo
q.0

Jsq;R0,V,Tdubsqdu2 s32d

plus termsOsl3,L0d, whereVsR0,V,Td is given by Eq.s23d,
and the mode stiffness

Jsq;R0,V,Td ; asq;R0,V,Td + ReS V̂sqd
êsqd

Ds%1
s1d − %2

s1dq2d2.

s33d

Here V̂sqd and êsqd are, respectively, the Fourier transforms
of Vs0dszd and es0dszd, the Coulomb potential and dielectric
function of an unperturbed cylinder. The factors%1

s1d and%2
s1d

are given in Eqs.sA6d and sA7d. The factorasq;R0,V,Td
comes from the expansion ofV0fhm±j ,Rszd ,U0g and is found
to be

asq;R0,V,Td = −
pss

R0

«+
2 + «−

2

«F
2

+ SpssR0
«+

2 + «−
2

«F
2 − gs

«+
3/2 + «−

3/2

«F
3/2 Dq2

+ S ]2

]R0
2 −

1

R0

]

]R0
DVshellsR0,V,Td, s34d

wheress is the surface tension,gs is the curvature energy,
and VshellsR0,V,Td is the mesoscopic electron-shell
potential,23 given self-consistently at finite bias by

VshellsR0,V,Td =
1

p«F
o
a=±

o
wv

avwsTdfvw

v2Lvw

3«a
2cosskF

aLvw − 3vp/2d, s35d

where kF
± =kF

Î«± /«F. In the present paper, the values18 ss
=«FkF

2 /16p and gs=2«FkF /9p2, appropriate for a constant-
volume constraint, are used throughout. Inserting material-
specific values22 does not lead to a significant change in the
stability diagram. Equationss32d–s35d represent the central
result of this paper.

Figure 3 shows the long-wavelength mode stiffness
Jsq=0d at zero and finite bias. For comparison, the leading-
order contributionasq=0d is plotted as a dashed curve. The
second term on the rhs of Eq.s33d, which is second order in
the induced charge imbalance, gives a significant contribu-
tion for small radii, but is negligible forkFR0@1. Moreover,
the sign ofJ, which determines stability, is essentially fixed
by a alone. The relative unimportance of the second-order
correction is reminiscent of theStrutinsky theorem48,49 for
finite fermion systems, which states that shell effects are
dominated by the single-particle contribution in the mean-
field potential.

A. Stability diagram

The stability of a cylindrical nanowire of radiusR0 at bias
V and temperatureT is determined by the function
Jsq;R0,V,Td. If Jsqd.0∀q, then the nanowire is stable
with respect to small perturbations, and is asmetadstable
thermodynamic state. IfJsqd,0 for anyq, then the wire is
unstable.

The second term on the rhs of Eq.s33d is positive
semidefinite, and thus cannot lead to an instability. The first
term asqd describes instabilities in two different regimes, as
in the equilibrium case,21,22sid the electron-shell contribution
has deep negative peaks at the thresholds to open new con-
ducting subbandsscf. Fig. 3d. sii d The surface contribution to
asqd becomes negative forqR0,1, the classical Rayleigh
instability. From Eqs.s33d and s34d, it is apparent that the
most unstable modesif anyd within the semiclassical ap-

FIG. 3. sColor onlined Total mode stiffnessJsq=0; R0,V,Td,
and leading-order contributionasq=0; R0,V,Td, at zero and finite
bias, forT=0.008TF.
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proximation isq=0, except for unphysical radiiR0&gs/ss
sless than one atom thickd. To illustrate this point, the second
derivativeDsR0,V,Td;]2J /]q2uq=0 is shown in Fig. 4. Note
that D.0 for kFR0.3.

The stability properties of the system are thus completely
determined50 by the sign of the stability function
AsR0,V,Td;Jsq=0; R0,V,Td. Figure 5 shows a stability
diagram in the voltageV and radiusR0 plane. Thex axis is
given in terms of the Sharvin conductances24d, to facilitate
the identification of the quantizedslinear-responsed conduc-
tance values of the stable nanowires. The shaded regions
show nanowires that are stable with respect to small pertur-
bations, with darker regions representing larger values of
AsR0,V,Td. In the figure, the solid lines show the subband
thresholds for right- and left-moving electrons, which are
determined by Eq.s22d. At the temperature shownT
=0.008TF, which corresponds roughly to room temperature,
the electron-shell effect dominates, leading to instabilities at
the subband thresholds, and stabilizing the wire in some of
the intervening fingers.

A stability diagram up toGS=50G0 is shown in Fig. 6,
where the subband thresholds have been omitted to avoid
clutter. Figures 5 and 6 show that cylindrical metal nano-
wires with certain magic conductance values
G/G0=1,3,6,12,17,23,34,42,… remain linearly stable at
room temperature up to bias voltageseV,0.1«F or higher.

These ballistic conductors can therefore support extremely
high current densities, of order 1011 A/cm2 by Eq.s1d. These
are precisely the same magic cylinders which were previ-
ously found to be linearly stable at zero bias up to very high
temperatures.22 Cylinders withG/G0=8 and 10 are also pre-
dicted to be stable at finite bias, but not as robust as the
neighboring configurations withG/G0=6 and 12.

It should be mentioned that in addition to the stable
cylindrical configurations shown in Figs. 5 and 6, nano-
wires with elliptical cross sections and conductanceG/G0
=2,5,9,29,… were also found to be stable at zero bias,24

although their finite-bias stability has not yet been investi-
gated.

Perhaps the most startling prediction of Figs. 5 and 6 is
that there are a number of cylindrical nanowire structures
which are stable with respect to small perturbations at finite
bias, but unstable in equilibrium. These metastable structures
could lead to additional peaks in conductance histograms at
finite bias, which are not present at low bias. It may also be
possible to observe switching behavior between the various
stable structures as the voltage is varied.

The results of the above stability analysis should be di-
rectly relevant for nanowires made of simple monovalent
metals, such as alkali metals and, to some extent, noble met-
als. Indeed, the calculated bias dependence of the stability of
metal nanocylinders with conductanceG/G0=1 and 3,
shown in Fig. 5, is consistent with experimental histograms
for gold nanocontacts,2 where a peak atG<G0 was found up
to 1.9 V at room temperature, and a peak atG<3G0 was
found up to about 1.5 V. Similar experimental results have
been obtained by several groups.3–8 Our analysis strongly
suggests that the remarkable stability properties of gold
nanowires at finite bias are not a special property of gold, but
rather a generic feature of metal nanoconductors.

B. Nature of the instability

The nature of the predicted instability of metal nanocyl-
inders at finite bias may be illuminated by means of a non-
trivial identity22 linking Eqs.s23d and s33d:

FIG. 4. sColor onlined The factorDsR0,Vd, coefficient of theq2

contribution toJsq; R0,Vd, at temperatureT=0.008TF.

FIG. 5. sColor onlined Stability of cylindrical metal nanowires
versus Sharvin conductances24d and bias voltage. Shadedsredd
areas indicate stability with respect to small perturbations atT
=0.008TF. Solid lines indicate subband thresholds for right- and
left-moving electrons.

FIG. 6. sColor onlined Stability of cylindrical metal nanowires
versus Sharvin conductanceGS between 10 and 50G0 and bias
voltage. Shadedsredd areas indicate stability with respect to small
perturbations atT=0.008TF.
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lim
q→0

Jsq; R0,V,Td = S ]2

]R0
2 −

1

R0

]

]R0
DVsR0,V,Td

L
. s36d

This implies that the instability corresponds to a
homogeneous-inhomogeneous transition,22 since the rhs of
Eq. s36d is proportional to the energetic cost of a volume-
conserving phase separation into thick and thin segments. In
the inhomogeneous phase at finite bias, the surface corruga-
tion will not be static, but will diffuse like a defect undergo-
ing electromigration.2,51,52The stable nanocylinders are im-
mune to electromigration, because they are translationally
invariant and they are so thin that they are defect free. Elec-
tromigration is possible only if a surface-defect is
nucleated,53 which becomes energetically favorable on the
stability boundary. The predicted surface instability may thus
represent the ultimate nanoscale limit of electromigration.

V. CONCLUSIONS

In this paper, we develop a self-consistent scattering ap-
proach to the nonequilibrium thermodynamics of open me-
soscopic systems, and use it to study the cohesion and sta-
bility of metal nanocylinders under finite bias. In our
approach, the positive ions are modeled as an incompressible
fluid, and interactions are treated in the Hartree approxima-
tion, using a quasi-one-dimensional form of the Coulomb
interaction. This single-band model is appropriate for simple
monovalent metals. It is especially suited to alkali metals,
but is also appropriate to describe quantum shell effects due
to the conduction-bands electrons in noble metals.

We have utilized asemiclassicaltreatment of the electron-
shell structure that plays a crucial role in stabilizing metal
nanowires at finite bias. Previous studies24,40have shown that
this semiclassical approach accurately describes the energetic
cost of long-wavelength surface perturbations, which are the
limiting factor22 in the structural stability of long nanowires.
Furthermore, we have assumed aballistic nonequilibrium
electron distributionin the nanowire at finite bias, neglecting
inelastic electron-phonon and electron-electron scattering.
This approximation is valid for wires shorter than the inelas-
tic mean-free path.

We find that the tensile force in a nanowire can be modu-
lated by several nano-Newtons when biased by a few volts.
Such a large effect should be observable experimentally,44–46

although the intrinsic behavior might be masked by electro-
static forces in the external circuit.

The principal result of this paper is a linear stability
analysis of metal nanowires at finite bias, which reveals that
cylindrical wires with certain magic conductance values
G/G0=1,3,6,12,17,23,34,42,… remain stable up to bias volt-
ageseV,0.1«F or higher, with the maximum sustainable
bias decreasing with increasing radius. In particular, wires
with G/G0=1 and 3 are predicted to be stable up toeV
,0.5«F. This maximum voltage is slightly larger than what
is observed experimentally.2,8 It should, however, be pointed
out that stability with respect to small perturbations is not a
sufficient condition for a nanowire to be observed. Metal
nanowires are metastable structures, and can be observed
only if their lifetime is sufficiently long on the experimental

time scale. As a result, the observed maximum sustainable
bias is likely to be somewhat smaller than that predicted by a
linear stability analysis.

A striking prediction of our stability analysis is the exis-
tence of nanowire structuresse.g., cylinders with conduc-
tanceG/G0=2,5,7,9,14,20,…d that are only stable under an
applied bias. This suggests that conductance histograms
taken at finite voltage might have additional peaks, or even a
completely different set of peaks, compared to zero-voltage
histograms. It may also be possible to observe switching be-
tween different stable structures as a function of voltage.

Metal nanowires with elliptical cross sections and con-
ductanceG/G0=2,5,9,29,… are also predicted to be stable at
zero bias.24 Although some of the conductance values of the
elliptical wires coincide with those of cylindrical wires pre-
dicted to be stable only at finite bias, it should be possible to
distinguish these geometries experimentally due to the differ-
ent kinetic pathways involved in their formation, and the
very different bias dependence of their stability.

Finally, we point out that the predicted instability of metal
nanowires at finite bias may represent the ultimate nanoscale
limit of electromigration, due to the current-induced nucle-
ation of surface modulation in an otherwise perfect, transla-
tionally invariant nanowire.
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APPENDIX: EXPANSION OF THE NONEQUILIBRIUM
FREE ENERGY

In this appendix, we present more details of the derivation
of Eqs.s30d and s32d.

Local density of statesgT„z,E…

In order to include the temperature in the semi-
classical formalism, we use a convoluted density of states
gTsz,Ed=ef−]f0sE−E8d /]Eggsz,E8ddE8, where f0sEd
=f1+expsbEdg−1. Thermodynamic quantities are then ob-
tained through their zero-temperature expression with the
density of statesgsEd replaced bygTsEd. The tempera-
ture dependence of the average partḡTsz,Ed, proportional
to f1+OsT/TFd2g<1 sTF is the Fermi temperatured, is neg-
ligible, while the temperature dependence of the fluctuating
part dgTsz,Ed is included in the damping factoravwsTd fsee
Eq. s19dg. In the following, we set the factoravwsTd equal to
its unperturbed value at the Fermi energy«F, since the varia-
tion of this factor with the perturbation or with energy does
not give an important contribution. We also drop the sub-
script T for the convoluted density of states to simplify the
notation.

For a perturbed cylinder, the average part of the density of
states, Eq.s18d, can be expanded to second order in the small
parameterl as
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ḡsz,Ed . ḡs0d + lḡs1d + l2ḡs2d, sA1d

where

ḡs0d =
kF

3R0
2

2p«F

Î E

«F
−

kF
2R0

4«F
+

kF

6p«F

Î«F

E
,

ḡs1d = SkF
3R0

p«F

Î E

«F
−

kF
2

4«F
DdRszd −

kFR0

6p«F

Î«F

E
dR9szd,

ḡs2d =
kF

3

2p«F

Î E

«F
dR2szd −

kF
2R0

8«F
dR8 2szd

−
kF

6p«F

Î«F

E
dRszddR9szd,

and the prime denotes differentiation with respect toz.
Similarly, the fluctuating part of the density of states for a

small deformation of a cylinder, Eq.s19d, can be calculated
using semiclassical perturbation theory,21,26 and is found to
be

dgsz,Ed . dgs0dsEd + ldgs1dsz,Ed + l2dgs2dsz,Ed, sA2d

with

dgs0d =
kF

2

2p«F
o
wv

avwsTdfvwLvw

v2 cosuvwsEd,

dgs1d =
kF

2

2p«F
o
wv

avwsTdfvwLvw

v2R0
dRszd

3fcosuvwsEd − kELvw sinuvwsEdg,

dgs2d = −
kF

2

2p«F
o
wv

avwsTdfvwLvw
2

2v2R0
2 kEdR2szd

3f2 sinuvwsEd + kELvw cosuvwsEdg,

where, once more, the sum is over all classical periodic or-
bits sv ,wd in a disk billiard of radiusR0, the factorfvw=1 for
v=2w and 2 otherwise accounts for the invariance under
time-reversal symmetry of some orbits, Lvw
=2vR0 sinspw/vd is the length of periodic orbitsv ,wd,
uvwsEd=kFLvw

ÎE/«F−3vp /2, and avwsTd=tvw/sinhtvw,
with tvw=pkFLvwT/2TF, is a temperature dependent damp-
ing factor.

To shorten subsequent equations, we define the functions
of energygj

sidsEd by writing the first- and second-order con-
tributions to the local density of states as

gs1dsz,Ed = g1
s1dsEddRszd + g2

s1dsEddR9szd, sA3d

gs2dsz,Ed = g1
s2dsEddR2szd + g2

s2dsEddR82szd

+ g3
s2dsEddRszddR9szd. sA4d

The total density of states per unit length of a cylindrical
wire is gs0dsEd= ḡs0dsEd+dgs0dsEd.

Bare charge imbalancesdr0„z… and dr̄0„z…

Now substituting the expansion of the local density of
states into Eq.s26d, one gets the expansion ofdr0szd as

dr0szd . ldr0
s1d + l2dr0

s2d, sA5d

with

dr0
s1dszd = %1

s1ddRszd + %2
s1ddR9szd,

where the coefficients%1
s1d and%2

s1d are defined as

%1
s1d =

kF
3R0

3p
S«+

3/2 + «−
3/2

«F
3/2 − 2D −

kF
2

8
S«+ + «−

«F
− 2D

+
d%+

s1d + d%−
s1d

2
, sA6d

%2
s1d = −

kFR0

6p
S«+

1/2 + «−
1/2

«F
1/2 − 2D , sA7d

with «±=m±−U0, and

d%±
s1d =

kF
2«±

p«F
o
vw

fvwavwsTd
v2R0

3fLvw cosuvws«±d + k±
−1 sinuvws«±dg ,

wherek±=kF
Î«± /«F, while

dr0
s2dszd = %1

s2ddR2szd + %2
s2ddR82szd + %3

s2ddRszddR9szd,

where coefficients%1
s2d , %2

s2d, and%3
s2d are

%1
s2d =

kF
3

6p
S«+

3/2 + «−
3/2

«F
3/2 − 2D +

d%+
s2d + d%−

s2d

2
,

%2
s2d = −

kF
2R0

16
S«+ + «−

«F
− 2D, %3

s2d =
%2

s1d

R0
,

and

d%±
s2d = −

kF
2

2p

«±

«F
o
vw

fvwavwsTd
v2R0

2 Lvw

3fLvw sinuvws«±d − 2k±
−1 cosuvws«±dg .

Similarly, Eq. s29d for dr̄0szd is expanded as

dr̄0sz,Ed . dr̄0
s0d + ldr̄0

s1d + l2dr̄0
s2d, sA8d

with

dr̄0
s0d =

U0

2
fgs0ds«+d + gs0ds«−dg ,

dr̄0
s1d = %̄1

s1ddRszd + %̄2
s1ddR9szd,

dr̄0
s2d = %̄1

s2ddR2szd + %̄2
s2ddR82szd + %̄3

s2ddRszddR9szd,

where%̄ j
sid;% j

sid+ 1
2U0fgj

sids«+d+gj
sids«−dg.

Effective Coulomb potential V„z,z8…

The expansion of the Coulomb potentials9d as a series in
l gives
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Vsz,z8d . Vs0dsz− z8d + lVs1dsz,z8d + l2Vs2dsz,z8d, sA9d

where

Vs0dszd =
e2

Îz2 + hR0
2
,

Vs1dsz,z8d =
dRszd + dRsz8d

2

dVs0dsz− z8d
dR0

,

Vs2dsz,z8d =
1

8
SfdRszd + dRsz8dg2 d

dR0

+
fdRszd − dRsz8dg2

R0
DdVs0dsz− z8d

dR0
.

For future use, let us define the Fourier transform ofVs0dszd
as

V̂sqd =E
0

L

dze−iqzVs0dszd. sA10d

Note that ReV̂sqd.0.

Inverse dielectric function e−1
„z,z8…

We first expand the dielectric functionesz,z8d, Eq. s27d,
as

esz,z8d = es0dsz− z8d + les1dsz,z8d + l2es2dsz,z8d, sA11d

where the zeroth-order term is

es0dszd = dszd +
gs0ds«+d + gs0ds«−d

2
Vs0dszd, sA12d

the first-order term is

es1dsz,z8d =
1

2o
a=±

fgs1dsz,«adVs0dsz− z8d + gs0dsz,«adVs1dsz,z8dg,

and the second-order term is

es2dsz,z8d =
1

2o
a=±

fgs2dsz,«adVs0dsz− z8d + gs1dsz,«adVs1dsz,z8d

+ gs0dsz,«adVs2dsz,z8dg.

Let us define the Fourier transform ofes0dszd as

êsqd =E
0

L

dz e−iqzes0dszd = 1 +
gs0ds«+d + gs0ds«−d

2
V̂sqd.

sA13d

Note that Refêsqd / V̂sqdg.0, since both gs0ds«d.0 and

V̂sqd.0. Substituting Eq.sA11d into the identity

E dz9e−1sz,z9desz9,z8d = dsz− z8d,

one can solve order by order for the inverse dielectric func-
tion e−1sz,z8d,

e−1sz,z8d = e−1,s0dsz− z8d + l e−1,s1dsz,z8d + l2e−1,s2dsz,z8d,

sA14d

where the zeroth-order term is

e−1,s0dszd =
1

L
o
q

eiqz

êsqd
,

the first-order term is found to be

e−1,s1d = −E dz1E dz2e−1,s0dsz− z1d

3es1dsz1,z2de−1,s0dsz2 − z8d,

and the second-order term is

e−1,s2dsz,z8d = −E dz1E dz2e−1,s0dsz2 − z8d

3fe−1,s0dsz− z1dfes2dsz1,z2d

+ e−1,s1dsz− z1des1dsz1,z2dg.

Screened potentialṼ„z,z8…

Substituting the expansionssA9d and sA14d of V ande−1

into Eq.s31d, one gets an expansion of the screened potential
as

Ṽsz,z8d = Ṽs0dsz− z8d + lṼs1dsz,z8d + l2Ṽs2dsz,z8d sA15d

where the zeroth-order term is

Ṽs0dszd =E dz1V
s0dsz− z1de−1,s0dsz1d =

1

L
o
q

V̂sqd
êsqd

eiqz,

the first-order term is

Ṽs1dsz,z8d =E dz1fVs0dsz− z1de−1,s1dsz1,z8d

+ Vs1dsz− z1de−1,s0dsz1 − z8dg,

while the second-order term is

Ṽs2dsz,z8d =E dz1fVs0dsz− z1de−1,s2dsz1,z8d

+ Vs1dsz− z1de−1,s1dsz1,z8d

+ Vs2dsz− z1de−1,s0dsz1 − z8dg.

Grand canonical potential V†V ,R„z… ,U„z…‡

Using Eqs. sA1d, sA2d, sA5d, sA8d, and sA15d for

gsz,Ed ,dr0,dr̄0, andṼ, we are now ready to expandV, start-
ing by rewriting Eq.s30d as

V . V0fhm±j,Rszd,U0g − N+U0 − V1fhm±j,Rszd,U0g

+ V2fhm±j,Rszd,U0g + V3fhm±j,Rszd,U0g, sA16d

where

C.-H. ZHANG, J. BÜRKI AND C. A. STAFFORD PHYSICAL REVIEW B71, 235404s2005d

235404-10



V1 = U0E dzdr̄0szd = U0LSU0

2 o
a=±

gs0ds«ad + l%̄1
s1dbs0d

+ l2o
q

f%̄1
s2d + s%̄2

s2d − %̄3
s2ddq2gubsqdu2D ,

V2 =
sU0d2

4 o
a=±

E dz gsz,«ad

=
sU0d2

4
Lo

a=±
Sgs0ds«ad + lg1

s1ds«adbs0d

+ l2o
q

hg1
s2ds«ad + fg2

s2ds«ad − g3
s2ds«adgq2jubsqdu2D ,

andV3= 1
2 edzdz8dr̄0szdṼsz,z8ddr̄0szd can be written as

V3fhm±j,Rszd,U0g = V3
s0dfhm±j,R0,U0g + l V3

s1dfhm±j,R0,U0g

+ l2V3
s2dfhm±j,R0,U0g.

The zeroth order term in the expansion ofV3 is

V3
s0d =

1

2
E dzdz8dr̄0

s0dszdṼs0dsz− z8ddr̄0
s0dsz8d

=
L

4
sU0d2o

a=±
gs0ds«ad,

the first-order term is

V3
s1d =

1

2
E dzdz8fdr̄0

s0dszdṼs1dsz,z8ddr̄0
s0dsz8d

+ 2dr̄0
s1dszdṼs0dsz− z8ddr̄0

s0dsz8dg

= LU0%̄1
s1dbs0d + OsL0d,

and the second-order contribution is

V3
s2d =

1

2
E dzdz8fdr̄0

s0dszdṼs2dsz,z8ddr̄0
s0dsz8d

+ 2dr̄0
s0dszdṼs1dsz,z8ddr̄0

s1dsz8d

+ 2dr̄0
s2dszdṼs0dsz− z8ddr̄0

s0dsz8d

+ dr̄0
s1dszdṼs0dsz− z8ddr̄0

s1dsz8dg

= LU0o
q

f%1
s2d + s%2

s2d − %3
s2ddq2gubsqdu2

+
L

2o
q

V̂sqd
êsqd

s%1
s1d − %2

s1dq2d2ubsqdu2 + OsL0d.

Adding up all the contributions in Eq.sA16d, and dropping
contributions of orderL0, one gets Eqs.s32d and s33d.

The above calculations also show that Eq.s30d can be
rewritten as

V = V0fhm±j,Rszd,U0g − N+U0

+
1

2
E dzdz8dr0

s1dszdṼs0dsz− z8ddr0
s1dsz8d + OsL0d.

sA17d
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