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Stability of metal nanowires at ultrahigh current densities
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We develop a generalized grand canonical potential for the ballistic nonequilibrium electron distribution in
a metal nanowire with a finite applied bias voltage. Coulomb interactions are treated in the self-consistent
Hartree approximation, in order to ensure gauge invariance. Using this formalism, we investigate the stability
and cohesive properties of metallic nanocylinders at ultrahigh current densities. A linear stability analysis
shows that metal nanowires with certainagic conductance valuesan support current densities up to
10 A/cm?, which would vaporize a macroscopic piece of metal. This finding is consistent with experimental
studies of gold nanowires. Interestingly, our analysis also reveals the existence of reentrant stability zones—
geometries that are stable only under an applied bias.
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I. INTRODUCTION Under a finite bias, the scattering states of right- and left-

) ) ‘moving electrons in a nanowire are populated differently,
Metal nanowires have been the subject of many experiayen if there is no inelastic scattering within the wire. An

mental and theoretical studies, both for their unique properagequate treatment of the electron-electron interactions is
ties and potential applicatiorisee Ref. 1 for a review of the cruycial to correctly describe this nonequilibrium electron dis-
field). One of the most remarkable properties of metal nanotribution. Some studies of transpd and cohesiolt in
wires is their ability to support extremely high current den-metal nanowires at finite bias did not include electron-
sities without breaking apart or vaporizifd For noble met-  electron interactions, so that the calculated transport and en-
als, experiments can be carried out in air, and the first fevergetics depended separately on both the left and right
peaks in conductance histograms can withstand applied volchemical potentialg:, and u_, thus violating thegauge in-
ages as high as 1 volt, and even 2 volts for the first peakyariancecondition: The calculated physical quantities should
corresponding to one conductance quan@gx2e?/h. Let  depend only on the voltage differenev/=pu,-u_, and

us estimate the corresponding current density: For a ballistighould be invariant under a global shift of the electrochemi-
metallic conductor in the form of a cylinder of radi®sthe ~ cal potential, since the total charge is conser’ed. self-
electrical conductanc® is given approximately by the Shar- consistent formulation of transport and cohesion at finite bias
vin formula G=Gy(k-R/2)?, wherek is the Fermi wave has recently been developed basedatninitio and tight-

- - - binding method<$:13-16 These computational techniques are
vector. Therefore the current density at applied voltige particularly well-suited to the study of atomic chains, but can

become intractable for larger nanostructures. An analytical
_ OV _ KGyV _3nes: eV . )

j=—s =~ , (1) approach to this problem is needed to study the interesting
wR? 47 8 ep mesoscopic effects'® which occur in systems intermediate
in size between the macroscopic and the atomic scale.
wheren is the number density of conduction electrons s In this paper, we extend our continuum mddel® of

the Fermi velocity, and:g is the Fermi energy. For an ap- metal nanowires to treat the ballistic nonequilibrium electron
plied bias of a few volts, the fact@V/er is of order unity, distribution at finite bias. Our model provides a generic de-
and the current density is of order #@\/cm?. Such high  scription of nanostructures formed of simple, monovalent
current densities would vaporize a macroscopic wire, thusnetals. It is especially suitable for alkali metals, but is also
prompting questions on the reason for the remarkable stabikppropriate to describe quantum shell effects due to the
ity of metal nanowires. conduction-band electrons in noble metals. For a fuller dis-
The first part of the answer to this question is that metakussion of the domain of applicability of our continuum ap-
nanowires are typically shorter than the mean-free pgfh proach, see Ref. 22. In the present work, Coulomb interac-
for inelastic scattering, so that the conduction electrons cations are included in the self-consistent Hartree
propagate through the wire without generating excitationgpproximation, in order to ensure gauge invariance.
such as phonofighat heat the wire. Instead, most of the  For a system out of equilibrium, there is no general way
dissipation takes place in the macroscopic contacts for then define a thermodynamic free energy. By assuming that
outgoing electrons. However, the absence of equilibration ofhe electron motion is ballistic, however, the energetics of the
the electron distribution within the nanowire raises anotherbiased system can still be described by a nonequilibrium
more fundamental, question: What is the effect of a highlyfree energy’ which can be used to study the stability
nonequilibrium electron distribution on the stability of a and cohesion of nanowires at finite bias. We find that metal
metal nanowire, given that the conduction electrons play aanocylinders with certainmagic conductance values
dominant role in the cohesion of metals? That is the questio®/Gy=1,3,6,12,17,23,34,42,, can support current densities
to which the present paper is devoted. up to 13* A/cm?. Our finding is consistent with experimen-
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tal results for gold nanocontaét$ (G<5G,) and atomic

chain§ (G=Gy,), but implies that the magic wires with Qa[/-l“wu]z_kBdeE 0(E)In(1 +ePEwd) (4

G>5G, are also extremely robust. Furthermore, we predict

a number of nanowire geometries that are stable only undds the grand canonical potential of independent electrons

an applied bias. moving in the potentialJ, in equilibrium with reservoire,
This paper is organized as follows: In Sec. II, we developand theinjectivity?’—2°

a formalism to describe the nonequilibrium thermodynamics f

of a mesoscopic conductor at finite bias. In Sec. lll, we apply g,(E) = iz Tr(gg@m - ﬁmsw)

this formalism to quasi-one-dimensional conductors, and ob- A~ OB OE

tain gauge-invariant results for the Hartree potential, grand . . -
canonical potential, and cohesive force of metal nanocylinlS _the partial density of states_ of electrons 'F‘Jec“"d by reser-
oir . HereS,,,=S,,[E,U(N] is the submatrix of the elec-

ders at finite bias. In Sec. IV, we perform a linear stabilityv . > i - o
analysis of metal nanocylinders at finite bias, the principafron'c scattering matrix describing electrons injected from

result of the paper. Section V presents some discussion af§Servoira and absorbed by reservoy and is a functional

conclusions. Details of the stability calculation are presente@' the mean-field potential. _ _
in the Appendix. The number density_(r) of the conduction electrons is

©)

a0, )
IIl. SCATTERING APPROACH TO NONEQUILIBRIUM p-(N) = UM % JdE %M E)F(E, o), (6)
THERMODYNAMICS o

. . . where f(E, u)={1+exd B(E—u)]} "t is the Fermi-Dirac dis-
We consider a metallic mesoscopic conductor connectegibution function. and

to two reservoirs at common temperatdres (kg3) 2, with
respective electrochemical potentigls=cr+eV,, wheregg .1 t 0S5, OS5,
is the chemical potential for electrons in the reservoirs at 9a(T,E) __4_77i2 T SW&U(F) _E(?)Sm ()

g . . - ’y
equilibrium, e is the electron charge, and. is the voltage
at the left(right) reservoir. Because the screening of electricis thelocal partial density of staté$-2°for electrons injected
fields in metal nanowires witl > G is quite good, the pres- from reservoira. In Egs.(6) and (7), 6/ 5U(r) denotes the
ence of additional nearby conductotsuch as a ground functional derivative.
plane has a negligible effect on the transport and energetics The mean-field potentidl is determined in the Hartree

of the system, and is therefore not considered. approximation by

While there is no general prescription for constructing a
free energy for such a system out of equilibrium, it is pos- u(r) :f &' VI(F - ) Sp(F), 8)
sible to do so based on scattering thé&dnf inelastic scat-

tering can be neglected, i.e., if the lendtlof the conductor _ : . . .
satisfied <L;,. In that case, scattering states within the con—Where 3p(F)=p-(F)=p.(F) is the local charge imbalance in

ductor populated by the leftright) reservoir form a sub- T_Te conductor gnltsi;(r*):ezd/h”] IS t?]e Clcnulombhpotgntllal. The- |
system in equilibrium with that reservoir. Dissipation only Hatree potential depends on the electrochemical potentials

takes place for the outgoing electrons within the reservoilOf Ephe Iefthar;d ?ght r?servzows% . imilar
where they are absorbed. Treating electron-electron interac- ' '€ Wnhole ormalism(2)«(7) is very similar for any

tions in mean-field theory, it is then possible to define amean-field potential that is a local functional of the electron

13 . :
nonequilibrium grand canonical potenti@l of the system, dengty,l .b.Ut we choose to work with th? Hartree_ po_tent|a|
for simplicity. The exchange and correlation contributions to

- the mean field are taken into account in the present analysis
Qs -, UN] = Qol s, -, U(N)] only macroscopicall§? by fixing the background density,
1 3 to its bulk value. Throughout this paper, we assume

T f drlp-(N +p.(NIU(F),  (2) =k¥/37%=const within the conductdjjellium mode).

where (), describes independent electrons moving in the
mean fieldU, p. are the number densities of electrafR9
and of ionic background chargés), and the second term on Equations(2)—(8) provide a set of equations at finite bias
the right-hand siderhs) of Eq. (2) corrects for double- that must be solved self-consistently. For a conductor of ar-
counting of interactions if),. Since the electrons injected bitrary shape, these equations may be quite difficult to solve.
from the left and right reservoirs are independent, aside fronWe therefore restrict our consideration in the following to
their interaction with the mean field), is given by the sum quasi-one-dimensional nanoconductors, with axial symmetry
about thez axis. The shape of the conductor is specified by

Ill. QUASI-ONE-DIMENSIONAL LIMIT

Qol s s UMD = > Q[ 0, U], (3) its radiusR(z) as a function ofz, and we assum&(z) <L.
a=t For such a quasi-one-dimensional geometry, we can approxi-
mately integrate out the transverse coordinates, replacing the
where Coulomb potential by an effective one-dimensional potential
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e? has been successful in describing many equilibtthand
(z-2)2+ (712)[R(2) + R(Z)]) ' (9 linear-responsE-37 properties of simple metal nanowires, to
the case of nanowires at finite bias. This formalism repre-
where 5 is a parameter of order unity. The longitudinal po- sents a considerable simplification comparedato initio
tential V(z,z') must be supplemented with a transverse conapproaches®-16or even traditional jellium calculatiorig;*
finement potential, which we take as a hard wall at the surand permits analytical results for the cohesion and stability
face of the wire?®-33This boundary condition necessitates aof metal nanocylinders at finite bias.
careful treatment of surface charges, as discussed below. As a
consistency check, our final results for the stability and co-
hesion are independent of the valuezp€hosen in the effec-
tive Coulomb potential.
With this form of the Coulomb potential, the mean field
U(z) becomes a function of the longitudinal coordinate only,

and Eqgs.(2)—(8) reduce to a series of one-dimensional inte- i ) _
gral equations, which are much more tractable. The granhere is a small parameter angR(2) is a slowly varying

V(z,Z') =

A. Quasicylindrical nanowire without backscattering

Consider a nearly cylindrical nanowire, with radius

R(2) =Ry +\R(2), (15

canonical potential of a quasi cylindrical wire of lendths
Q{e},R(2),U(2)] = Qol{n+},R(2),U(2)]

1 L
- Ef dZp_(2) + p.(2)]U(2),
0

(10

where Qg is still given by Egs. (3)«5), with Q,
=Q.[1q,R(2),U(2)]. Here

80y
()=——= dE g,(z.E)f(E, i, 11
p-(2) U@ Z; WzBf(Eu) (11
is the linear density of conduction electrons, where
1 5S oS! )
E)=- — T v ye | Tya 12
9.(2E) 477i2y r(Syazsu(z) o) (12

is the injectivity of a circular slice of the conductoratThe
scattering matrixS=§JE,R(z),U(z)] is now a functional of

R(2) and U(2). In order to compensate for the depletion of
surface electrons due to the hard-wall boundary condition,

function. The couplings of the nanowire to the reservoirs are
assumed ideal, so that electrons enter or exit the conductor
without backscattering. For sufficiently small, electron
waves partially reflected or transmitted by the small surface
modulation can be neglected, because they give a negligible
contribution to the density of states. The ridlft)-moving
electrons in the bulk of the wire are thus in equilibrium with
the left(right) reservoir. Moreover, the Hartree potentitiz)
varies slowly withz, and can be taken as a shift of the
conduction-band bottom in the adiabatic approximation. The
injectivity therefore simplifies to

9.zE) =30(zE-U(2),

whereg(z,E) is the local density of states for free electrons
in a circular slice of radiuf(z). Equation(4) can be rewrit-
ten as

1t u-U@)
Qa[,u,R(z),U(z)]:Ef dzJ dE
0

X[E-u+U(@2]gr(zE), (16

the linear density of positive background charges is taken to

be
(2= K2R(2)? ) k2R(2)V1 +R4(2) ke (1 _R@RA2) )
37 4 3 V1+ Rg(z)

(13
where R,(z) =dR(z)/dz and R,{z)=d’R(z)/dZ. The second

term on the rhs of Eq(13) corresponds to the well-known

surface correction in the free-electron mo¢feThe last term

where the integration variabEeis no longer the total energy
of an electron, but rather its kinetic energy. Hergz,E)
=-[dE'g(z,E") of(E-E’,0)/JE is a convoluted local den-
sity of states in a slice of the wire, and can be used to obtain
finite-temperature thermodynamic quantities from their zero-
temperature expressioffsso that Eq.(16) is equivalent to
the usual definition of the grand canonical potentidl.
Similarly, the linear density of electrons can be written in
terms of the convoluted density of states as

represents an integrated-curvature contribution, which is

found to be a small correction. The prescription given in Eq.
(13) is essentially equivalent to the widely employed practice

of placing the hard-wall boundary at a distarte3/ 8k
outside the surface of the mef4l.
The Hartree potential is
L
U(2) :f dZV(z,2')ép(2Z'), (14)
0

where 5p(2) =p_(2) — p.(2).

Equations (9)—(14) provide a natural, gauge-invariant,

generalization of th@anoscale free-electron mogi€lwhich

Ho~U(2)

80
0 dEg(z,E).

:§U—(Z)

is

) 17

p-(2)
The convoluted density of states of a circular slice of the

nanowire can be expressed semiclassically® ag(z,E)
=g(z,E) + 8g1(z,E), wheregy is a smoothly varying func-
tion of the geometry, known as the Weyl term, asug(z, E)
is an oscillatory quantum correction. The temperature depen-
dence of the Weyl term is negligible,gr=gXx[1
+O(T/Tg)?], whereTg is the Fermi temperature. The zero-
temperature value is
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k2o V(2)

- E KiS@ keaC2 [er
g(Z,E)_ 27728|: "

- 6’7728|: E '
(18)

whered\(z), dS(z), anddC(z) are, respectively, the volume,

EE 8’778|:

. B
external surface-area, and external mean-curvature of a slice

of the wire. The fluctuating padg; can be obtained through
the trace formul&

ke

TEE

L,w(2)
02

3gr(zE)= 5 > fondun(T) c0S60,,(z,E),
Wu

(19

where the sum is over all classical periodic orhitsw)
in a disk billiard®3°of radiusR(z). Here the factof =1 for
v=2w, and 2 otherwise, accounts for the
ance under time-reversal symmetry of some orHitg,(2)
=2vR(z)sin(mw/v) is the Ilength of periodic orbit
W),  Oyu(Z,E)=keLw(2VElep=3vm/2, and ay,(T)

=r,/sinht,, is a temperature-dependent damping factor, ) . .
o g P P pIng where U is calculated with a symmetric voltage draf

W|th TvW:’n-kFLUWTIZTF'
The semiclassical approximation, E¢&8) and (19), al-

lows for an analytical solution for the ballistic nonequilib-

invari-
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0.2 T | [

— ev= —
0.5 1= —__ eV=0.5¢,
0.1 | T~0.008T, =

FIG. 1. (Color onling The Hartree potentidl for electrons in
a cylindrical nanowire at finite temperatufe 0.0087, with a sym-
metric potential drop, versus the radiRg of the wire.

N, is the total number of background positive charges. Equa-
tion (20) gives a relatiot?

Uo= UG (R, V. T) + 5(1s + 1) — &, (21)

=—V_=%V. Equation(21) guarantees that all physical prop-
erties of the system calculated in the following are just func-

rium electron distribution in a metal nanowire at finite bias.tions of the voltage/, and not ofu. and u- separately.

It also enables us to carry out a linear stability analysis of

Using these expressions, one can solve(EQ). for U, for

metal nanowires at finite bias, with analytical results for the2 Symmetric potential dropu,=e+3eV. The solution is
stability coefficients. Although these calculations could inShown in Fig. 1 as a function of radiug, at two different
principle be carried out using a fully quantum mechanicalvoltagesV. In the equilibrium casgV=0), U, oscillates
solution of the electronic scattering problem, the semiclassiabout zero, exhibiting cusps at the subband thresholds, and

cal approximation has been shaitf’to accurately describe

increasing in amplitude &R, decreases, due to the quantum

the long-wavelength surface perturbations that are the limitconfinement. Note that in equilibriunt)o—0 as Ry— <,

ing factof? in the stability of long nanowires.

consistent with the well-known behavior of bulk jellium. At

Equations(14) and (17) provide a set of self-consistent finite bias, each cusp id, splits in two, corresponding to the
equations to solve for the ballistic nonequilibrium electronsubband thresholds for left- and right-moving electrons
distribution in a quasi-one-dimensional nanoconductor at fi-

nite bias. Once the distribution. is obtained, the grand ca-

nonical potentialQ) of the electron gas may be calculated
from Egs. (10) and (16). The functional dependence of

Q[R(z)] vyields information on the cohesi&® and

stability?:22244%0f a metal nanowire, as in the equilibrium

case.

B. Solution for a cylindrical nanowire; Hartree potential
and tensile force

M = SV(RO) + UO(RO1V!T)1 (22)

wheree,(Ry) are the eigenenergies of a disk billiard of radius

Ry. This is illustrated in Fig. 1 foeV=0.5%¢. Note that in
addition to the splitting, there is a substantial shift of the
peak structure at finite bias.

Using Eq.(10), the grand canonical potential of a cylinder
is now found to be

Q(Ro, V. T) = Qol{ s}, Ro, Uol = N Up. (23

For an unperturbed cylinder, the mesoscopic Hartree poyote that() is invariant under a global shift of the potential

tential U, that simultaneously solves Eqgdl4) and (17) is
only a function of the radiuf,, voltageeV=u,-u_, and

U,, due to an exact cancellation in the two terms on the rhs
of Eq. (23). The tensile force in the nanowire provides direct

temperatureT, and is constant along the wire, neglecting information about cohesion, and is given by
boundary effects, which are important only within a screen-

ing Iength(~k;1) of each contact(This description is valid
for wires with 1<kgL <kglL;,.) Ug is independent of the
choice of 5 in the Coulomb interaction, E¢9), and can be
determined by the charge neutrality condition

Q=36e[N_(1. = Ug) +N_(u_~Ug)]-eN, =0, (20)
where %N_(,u:,ui—uo):%fgdzf”dE Or(z,E) is the number

1)
F(RoV.T) == —=

RgL,V,T'

Figure 2 shows the tensile force of a metal nanocylinder as a
function of its cross section for two different bias voltages.
To facilitate comparison with the stability diagrams in Sec.
IV below, the cross section is plotted in terms of the cor-

of right (left)-moving electrons in the cylindrical wire, and rected Sharvin conductari®e
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OS T T T T T T T T T ] Having found the self-consistent soluti¢23) for a cylinder,
0 TZO‘%%BZ% b we perturb the cylinder as in EQL5), and expand the free
— —0.5 1\ -——-eV=0.5e; 4 energy up to second order in the small paramgtéirst, the
<@ —1 = — self-consistent integral equatio(ts4) and(17) for the ballis-
L-15 - — tic nonequilibrium electron distribution are solved using
= oL - first-order perturbation theory in. Then the free energy is
o[ | calculated using Eq$10) and(16).
gl Lo b a ) o s U bt o 7, The radius of the wire is given by E¢L5), with a pertur-
61t =2 3 4 5 6 7 8 9 10 bation function
G, [2¢2/h]

SR(z2) = b eiqzy b(q)" = b(-q).
FIG. 2. (Color onling Tensile force in a metal nanocylinder @ % @ @ -9

versus cross-sectional area, at two different bias voltages at tem-
peratureT=0.008T¢. The cross section is plotted in terms of the The surface perturbationsR(z) is subject to a constraint
Sharvin conductanc8g, Eq.(24), and the force is given in units of fixing the total number of atoms in the wire. In previous
er/ N\ (\¢ being the Fermi wavelengthwhich is 1.7 nN for Au. works, we have considered various constraffts, which
allow one to adjust the surface properties of the wire to
— 2 model various materials. The simplest such constraint is vol-
Gs = Gol (keRo/2)” ~ keRo/2], (24 ume conservation, under which tE]e coefficiend) is fixed
which gives a semiclassical approximation to the electricaby
conductance. In Fig. & <0 corresponds téension while
F>0 corresponds tacompression As shown below, the b(O):—LE|b(Q)|2
cusps in the cohesive force at the subband thresholds corre- 2Ry, '
spond tostructural instabilitiesof the system.
In Fig. 2, the force calculated at zero bias is very similarOther reasonable constraints do not lead to qualitatively dif-
to previous resulf®4142based on the free-electron model, ferent conclusions.
even though those calculations did not respect the charge Within linear response theory, we can expaad(z)
neutrality(20) enforced by Coulomb interactions. The reasonaroundUj to linear order inU(z)-U,, whereUy is the me-
for the good agreement is that the contribution of the Hartresoscopic Hartree potential for the corresponding unperturbed
potential to the energy of the system isecond-ordeme-  cylindrical wire. One gets
soscopic effect at zero bid%2® which is essentially negli-
gible for G>3G,. An earlier calculatiof? that did invoke 8p(2) ~ 6p (Z)_f 47 op-(2)
charge neutrality obtained a very different—and incorrect— 0 sU(Z)
result, because the second term on the rhs of(Eg. was
omitted, resulting in a double counting of Coulomb interac- +J dz,dz, p-(2)
tions. 8U(zy)
Figure 2 shows that the cohesive force of a metal nano-
wire can be modulated by several nano-Newtons for a bias ovhere Eq.(14) has been used andpy(2), called the bare
a few volts. Such a large effect should be observable experharge imbalance, is defined as
mentally using appropriate cantilevéfs?® although the in- 2a-Up
trinsic behaviqr might be masked by electrostatic forces in Spo(2) = EE f dEgH(Z,E) - p:(2). (26)
the external circuit. In contrast to the casevat0, the Cou- 2 s
lomb interactions play an essential role in determining the . ) ) )
cohesive force at finite bias, since the positions of the peak§OW defining the dielectric function

0

Yo

V(z1,2))6p(z,), (25
Yo

depend sensitively on the Hartree potentiglof the ballistic 5p_(z,)

nonequilibrium electron distribution, shown in Fig. 1. The €(z1,2)) = 5(21—22)—fdz3 —-1 V(z3,25), (27)

gauge-invariant result shown in Fig. 2 thus differs substan- U(z) Yo

tially from previous resultd! where screening was not :

treated self-consistently. Gauge-invariant results for the non\fve can rewrite Eq(25) as

linear transport through metal nanocylinders will be pre- , o

sented elsewher. op(2) = f dz' € 1(z,2')6po(2'), (28

_l - . - . . . . .
IV. LINEAR STABILITY OF A CYLINDER AT FINITE where € is the inverse dielectric function which satisfies
VOLTAGE Jdze Y (z1,25)e(23,2) = 8z, - 2), and

In this section, we perform a linear stability analys® — _ op-(2)

for cylindrical nanowires under a finite bias Coulomb in- 9po(2) = 8po(2) = | dz () UOUo- (29

teractions are included self-consistently using the formalism
of Sec. Ill. Although the details of the calculation are ratherThe functional derivativedp_(z)/8U(z') can be calculated
complicated, the method is conceptually straightforwardusing Eq.(17), and is found to be
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Ip-(2)
oU(Z')

_ 8z-7")
Uo 2

2 gT(Z= Mo ™ UO) .

a=t

Now we can expand the nonequilibrium grand canonical
potential (10) as a series ir\. In order to do so, we first
expand Eq(10) aroundU,. Using Egs.(14), (17), (26), and
(29), one gets

Mode Stiffness [e; k']

L

O =Q[{1:},R(2),Uo] = Ug J dzdpo(2)
0

1t o~ _
+ Ef dzdZ 8po(2)V(z,Z') 5po(Z')
0

Gg / Gy

(Up)? - FIG. 3. (Color onling Total mode stiffnes€(q=0; Ry,V,T),
+ 4 gi 0 dzgi(z,e4) — N:Uo, (30 and leading-order contribution(q=0; Ry,V,T), at zero and finite
bias, forT=0.008T.

wheree,=u,—Ugy, and the screened potentradz,z’) is de-
fined as 1 (Df,
VShelI(RO!VrT) = E E aUWZ =

SFazt wo U bow

Ver)= [ avenias. @ cotootkiLoy - Bom2),  (35)

At this point, all quantities have been expressed in termvhere ke=keve./s¢. In the present paper, the valdesr,
of the local density of states(z,E) and the Coulomb inter- =&rKe/ 16 and ys=2e¢ke/ 9%, appropriate for a constant-
actionV(z,z'), whose expansions in series)ofire presented Volume constraint, are used throughout. Inserting material-
in the Appendix. In the end, the expansion of the grand caSPecific value¥ does not lead to a significant change in the
nonical potential as a series inis found to be stability d|a}gram. Equation&32)—(35) represent the central

result of this paper.

Figure 3 shows the long-wavelength mode stiffness
E(g=0) at zero and finite bias. For comparison, the leading-
order contributiona(q=0) is plotted as a dashed curve. The
plus termsO(\3,L°%), whereQ(Ry,V,T) is given by Eq(23), second term on the rhs of E@3), which is second order in
and the mode stiffness the induced charge imbalance, gives a significant contribu-

tion for small radii, but is negligible fokcR,>1. Moreover,
_ Q(q) D D2 the sign ofZ, which determines stability, is essentially fixed
E(9R,V, T) = a(q;Ry,V, T) + Rl —— | (01— 037°99)". by « alone. The relative unimportance of the second-order
€(q) correction is reminiscent of th&trutinsky theoref4° for
(33 finite fermion systems, which states that shell effects are
. dominated by the single-particle contribution in the mean-
HereV(q) ande(q) are, respectively, the Fourier transforms field potential.
of VO(2) and €%(z), the Coulomb potential and dielectric

function of an unperturbed cylinder. The fact@%) and Q(zl) A. Stability diagram
are given in Egs(A6) and (A7). The factora(q;Ry,V,T)
comes from the expansion &[{u.},R(z),Uy] and is found

Q=Q(Ry,V,T) + 2L X E(q;R,,V,T|b(@)? (32

q>0

The stability of a cylindrical nanowire of radilg, at bias
V and temperatureT is determined by the function

to be Z(q;Ry,V,T). If Z(g)>00q, then the nanowire is stable
ol + & with respect to small perturbations, and is(raetgstable
a(Q;Ry,V,T) =~ —=——— thermodynamic state. E(q) <O for anyq, then the wire is
Ro ek unstable.
ei+e’ 32437 The second term on the rhs of E3) is positive
+| moRo 2 Vs 32 q semidefinite, and thus cannot lead to an instability. The first
F F term a(q) describes instabilities in two different regimes, as
N (i B ii)v (RoV.T),  (39) in the equilibrium casé*?2(i) the electron-shell contribution
,;»Rg Ro IRy shelf720: ¥ 7/ has deep negative peaks at the thresholds to open new con-

ducting subbandécf. Fig. 3). (ii) The surface contribution to
where oy is the surface tensiony, is the curvature energy, a(q) becomes negative fogR,<1, the classical Rayleigh
and Vge(Ro,V,T) is the mesoscopic electron-shell instability. From Eqgs(33) and (34), it is apparent that the
potential?® given self-consistently at finite bias by most unstable modéif any) within the semiclassical ap-
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FIG. 4. (Color onling The factorD(Ry,V), coefficient of theg? W
contribution to=(q; Ry,V), at temperaturd=0.008T. 010 15 20 25 30

G,[2e2/h]

(o))
o

proximation isq=0, except for unphysical radiRy=< ys/ o5

(less than one atom thigkTo illustrate this point, the second FIG. 6. (Color online Stability of cylindrical metal nanowires
derivativeD(Ry,V, T) = 3?2/ d0?| 4= is shown in Fig. 4. Note versus Sharvin conductan@s between 10 and 5G, and bias
that D >0 for keRy> 3. voltage. Shadedred) areas indicate stability with respect to small

The stability properties of the system are thus completelyperturbations af=0.008k.
determine®® by the sign of the stability function
A(Ry,V,T)=E(q=0; Ry,V,T). Figure 5 shows a stability These ballistic conductors can therefore support extremely
diagram in the voltag® and radiusR, plane. Thex axis is  high current densities, of order #0A/cm? by Eq.(1). These
given in terms of the Sharvin conductan@), to facilitate  are precisely the same magic cylinders which were previ-
the identification of the quantizedinear-respongeconduc-  ously found to be linearly stable at zero bias up to very high
tance values of the stable nanowires. The shaded regionemperature$? Cylinders withG/G,=8 and 10 are also pre-
show nanowires that are stable with respect to small pertudicted to be stable at finite bias, but not as robust as the
bations, with darker regions representing larger values ofeighboring configurations wits/Gy=6 and 12.

A(Ry,V,T). In the figure, the solid lines show the subband It should be mentioned that in addition to the stable
thresholds for right- and left-moving electrons, which arecylindrical configurations shown in Figs. 5 and 6, nano-
determined by EQ.(22). At the temperature showd  wires with elliptical cross sections and conductal&gs,
=0.008T, which corresponds roughly to room temperature,=2,5,9,29,.. were also found to be stable at zero Iias,
the electron-shell effect dominates, leading to instabilities aalthough their finite-bias stability has not yet been investi-
the subband thresholds, and stabilizing the wire in some ofated.

the intervening fingers. Perhaps the most startling prediction of Figs. 5 and 6 is

A stability diagram up toGs=50G, is shown in Fig. 6, that there are a number of cylindrical nanowire structures
where the subband thresholds have been omitted to avoighich are stable with respect to small perturbations at finite
clutter. Figures 5 and 6 show that cylindrical metal nano-bias, but unstable in equilibrium. These metastable structures
wires  with certain magic conductance values could lead to additional peaks in conductance histograms at
G/Gy=1,3,6,12,17,23,34,42, remain linearly stable at finite bias, which are not present at low bias. It may also be
room temperature up to bias voltage¥~ 0.1e¢ or higher.  possible to observe switching behavior between the various
stable structures as the voltage is varied.

The results of the above stability analysis should be di-
rectly relevant for nanowires made of simple monovalent
metals, such as alkali metals and, to some extent, noble met-
als. Indeed, the calculated bias dependence of the stability of
metal nanocylinders with conductand®/Gy=1 and 3,
shown in Fig. 5, is consistent with experimental histograms
for gold nanocontactdyhere a peak & =~ G, was found up
to 1.9 V at room temperature, and a peakGat 3G, was
found up to about 1.5 V. Similar experimental results have
been obtained by several group8.Our analysis strongly
suggests that the remarkable stability properties of gold
nanowires at finite bias are not a special property of gold, but
G.[262/h] rather a generic feature of metal nanoconductors.

FIG. 5. (Color online Stability of cylindrical metal nanowires
versus Sharvin conductand¢24) and bias voltage. Shaddded)
areas indicate stability with respect to small perturbationsTat ~ The nature of the predicted instability of metal nanocyl-
=0.008T:. Solid lines indicate subband thresholds for right- andinders at finite bias may be illuminated by means of a non-
left-moving electrons. trivial identity?? linking Egs.(23) and(33):

B. Nature of the instability
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o P 1 0 \QR,V,T time scale. As a result, the observed maximum sustainable
im=(q; R,V =\ -5 |— - (39 bias is likely to be somewhat smaller than that predicted by a
linear stability analysis.
This implies that the instability corresponds to a A striking prediction of our stability analysis is the exis-
homogeneous-inhomogeneous transifidsince the rhs of tence of nanowire structure®.g., cylinders with conduc-
Eq. (36) is proportional to the energetic cost of a volume-tanceG/Gy=2,5,7,9,14,20,.) that are only stable under an
conserving phase separation into thick and thin segments. lapplied bias. This suggests that conductance histograms
the inhomogeneous phase at finite bias, the surface corrugtaken at finite voltage might have additional peaks, or even a
tion will not be static, but will diffuse like a defect undergo- completely different set of peaks, compared to zero-voltage
ing electromigratior?®152The stable nanocylinders are im- histograms. It may also be possible to observe switching be-
mune to electromigration, because they are translationalljween different stable structures as a function of voltage.
invariant and they are so thin that they are defect free. Elec- Metal nanowires with elliptical cross sections and con-
tromigration is possible only if a surface-defect is ductancec/Gy=2,5,9,29,.. are also predicted to be stable at
nucleated® which becomes energetically favorable on thezero bias’* Although some of the conductance values of the
stability boundary. The predicted surface instability may thuselliptical wires coincide with those of cylindrical wires pre-
represent the ultimate nanoscale limit of electromigration. dicted to be stable only at finite bias, it should be possible to
distinguish these geometries experimentally due to the differ-
ent kinetic pathways involved in their formation, and the
V. CONCLUSIONS very different bias dependence of their stability.

In this paper, we develop a self-consistent scattering ap- Fina]ly, we pqint out that the predicted instgbility of metal
proach to the nonequilibrium thermodynamics of open menanowires at fm@e b|as may represent the u_Itlmate nanoscale
soscopic systems, and use it to study the cohesion and stlg]_nt of electromigration _due_to the curre_nt-lnduced nucle-
bility of metal nanocylinders under finite bias. In our &tion of.surfe}ce modula.tlon in an otherwise perfect, transla-
approach, the positive ions are modeled as an incompressibi@nally invariant nanowire.
fluid, and interactions are treated in the Hartree approxima-
tion, using a quasi-one-dimensional form of the Coulomb ACKNOWLEDGMENTS
interaction. This single-band model is appropriate for simple )
monovalent metals. It is especially suited to alkali metals, 1NiS work was supported by NSF Grant No. 0312028.
but is also appropriate to describe quantum shell effects dugn€ of the authorsC.A.S) thanks Hermann Grabert and
to the conduction-band electrons in noble metals. Frank Kassubek for useful discussions during the early

We have utilized semiclassicaireatment of the electron- Stages of this work.
shell structure that plays a crucial role in stabilizing metal
nanowires at finite bias. Previous studi¢®have shown that APPENDIX: EXPANSION OF THE NONEQUILIBRIUM
this semiclassical approach accurately describes the energetic FREE ENERGY
cost of long-wavelength surface perturbations, which are the
limiting factor’? in the structural stability of long nanowires.
Furthermore, we have assumedballistic nonequilibrium
electron distributionin the nanowire at finite bias, neglecting
inelastic electron-phonon and electron-electron scattering. Local density of statesgr(z,E)

This approximation is valid for wires shorter than the inelas- | d include th in th .
tic mean-free path. n order to include the temperature in the semi-

We find that the tensile force in a nanowire can be modu_classical formalism, we use a convoluted density of states
lated by several nano-Newtons when biased by a few voltng(Z'E):f[_‘?fPl(E_E/)/&E]g(Z’E/_)dE/' ‘where  fo(E)
Such a large effect should be observable experimerféaty, —L1*+&XHBE)]™. Thermodynamic quantities are then ob-
although the intrinsic behavior might be masked by electrof@ined through their zero-temperature expression with the
static forces in the external circuit. density of statesg(E) replaced bygT(E). The tem_pera-

The principal result of this paper is a linear stability ture dependence of the average pagytz,E), proportional
analysis of metal nanowires at finite bias, which reveals thato [1+O(T/Tg)?]=1 (Tg is the Fermi temperatuyeis neg-
cylindrical wires with certain magic conductance valuesligible, while the temperature dependence of the fluctuating
G/Gy=1,3,6,12,17,23,34,42, remain stable up to bias volt- part 8gr(z,E) is included in the damping facta,,(T) [see
ageseV~0.1sg or higher, with the maximum sustainable Eq.(19)]. In the following, we set the facta,,,(T) equal to
bias decreasing with increasing radius. In particular, wirests unperturbed value at the Fermi energy since the varia-
with G/Gy=1 and 3 are predicted to be stable upetd tion of this factor with the perturbation or with energy does
~0.5¢¢. This maximum voltage is slightly larger than what not give an important contribution. We also drop the sub-
is observed experimentaffy It should, however, be pointed script T for the convoluted density of states to simplify the
out that stability with respect to small perturbations is not anotation.
sufficient condition for a nanowire to be observed. Metal For a perturbed cylinder, the average part of the density of
nanowires are metastable structures, and can be observsthtes, Eq(18), can be expanded to second order in the small
only if their lifetime is sufficiently long on the experimental parameteni as

In this appendix, we present more details of the derivation
of Egs.(30) and (32).
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9(zE) = —r0> + )@tl) + )\2662) (A1) Bare charge imbalancesépy(z) and épy(2)
where Now substituting the expansion of the local density of
states into Eq(26), one gets the expansion 6py(z) as
2 2
o KR [E KRy ke e Spo(2) = Nop® + \25p2, (A5)
2 4 6 E’ .
TEE EE EE TEE Wlth
(l) (1) (1) oporr
0= ( R [E_ K )m() KeRy / ) (2)= e R(@) + e R (2),
mer where the coefficientg!” and o\" are defined as
k3 E RO Q(l) k3R0<3/2—3/2_2) kF(ﬁ_z)
2= [ SR - R 2 AN 8l o
2778;: EE 8 EE
dor o0 (A6)
k + —1
-/ ZERDR (), 2
6mer ¥V E
] ) o . K 12, 12
and the prime denotes differentiation with respect.to o) = - FR0<— - 2) (A7)
Similarly, the fluctuating part of the density of states for a 6 12

small deformation of a cylinder, Eq19), can be calculated

using semiclassical perturbation thedhg® and is found to with &= ~Uo, and

be 50 = kes o Fouon(T)
+ 2
89(2,E) = 8gO(E) + \ogP(z,E) + \259 2 (2,E), (A2) mer o URo
with X[Luw COSO,(ex) + k;l sin 0Uw(8i)],

2 Wherek+:kF\f‘s+/sF, while
59(0) = kF E a’UW(T)vaLUWCOS (E) (2) 5 @ ' :
2Ter W v? pwA (2= Q % 5R (20 + 0, 0R'“(2) + Q 5R(Z)5R’ (2),

where coefﬂment@1 , 9(22), andQ are

59(1) kF 2 a'vw(T)vaLuW 5R(Z) Q(Z) — ﬁ(M _ 2) M
2TEE W v°Ry 1 " 6n 2/2 2 '
X[€0S0,,(E) = kgL Sin 6, (E)], ) @
Q<>:_kFR0(8++8- ) o=
59(2) _ k|2: a'UW(T)fUW UWk §R2( ) ’ 16 eF , ’ RO ’
T 2mee o 20°RS F and
X[2 SiN G (E) + Kelyy, COS O, (E)], 502 =~ X £23 T
+ = 2 VW
where, once more, the sum is over all classical periodic or- 2meew VR
bits (v, w) in a disk billiard of radiusR,, the factorf,,,=1 for X[ Ly SiN G,u(e2) — 2Kt cOS B, (e4) ]

v=2w and 2 otherwise accounts for the invariance under_ o
time-reversal  symmetry of some  orbits, L,  Similarly, Eq.(29) for py(2) is expanded as
=20R, sin(ww/v) is the length of periodic orbit(v,w), Spo(Z,E) = 5p0)+)\5p 1>+)\25p02), (A8)
0,(E)=keL,w\E/ec—3vm/2, and a,,(T)=7,,/sinhz,,
with 7,,,= kel T/ 2T, is a temperature dependent damp-With
ing factor. Uo
To shorten subsequent equations, we define the functions 5550) = ?[9(0)(8+) + g(o)(S-)],
of energyg'(E) by writing the first- and second-order con-
tributions to the local density of states as

305" =iV oR(@) + 0§ R (2),
B(zE) =g’ (E)R@) + g (E)oR'(D),  (A3)

J o % 5p = 0P 6R¥(2) + 0P 6R'Y(2) + 0P SR(2) R (2),

9?(zE) = 9(2)(5)5R2(Z +g2(E)oR'X(2) Wherer EQ]- +§U0[gj')(s+)+gj')(s_)].

2 r
97 (E)SR2)5R(2). (A4) Effective Coulomb potential V(z,z')

The total density of states per unit length of a cylindrical The expansion of the Coulomb potent{8) as a series in
wire is gO(E)=g©(E) + 599 (E). \ gives
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V(z,2) =VO(z-2) +\VY(z2) +\VP(z,Z),  (A9)

where

VO@) =,

V2 + RS

_ OR(2)+ 6R(Z) dVO(z-7)
- 2 drR, '

vl(z,2)

VO(z,7) = é([m@ + m(f)]?%o

LLR@) - 5R(Z’)]2) dV9(z-2)
Ro dRy

For future use, let us define the Fourier transformtt(z)
as

L
V(q) = f dze™@2/0)(z). (A10)
0

Note that Reé/(q) > 0.

Inverse dielectric function € 1(z,2’)

We first expand the dielectric functios(z,z'), Eq. (27),
as

e(z2,2)=€9z-7) + eV (z,7) + N2eP(z2,2), (A11)
where the zeroth-order term is
O(s )+ g0
6(0)(2) =8(2) + wv(o)(z), (A12)

the first-order term is

1
eV(z72)= 52 [0P(z,e)VO(z-27) + 9O z,e,)VV(z,2)],
and the second-order term is

1
€2(22) =3 2 [0%(zeV(z-7) + gV 22V (22)

a=%

+9%ze)V?(2,2)].

Let us define the Fourier transform &f)(z) as

99%en) +9 %) ¢

L
&g = f dz €%e9(z) =1 + V(q).

0 2
(A13)
Note that RE&(q)/V(g)]>0, since bothg©(e)>0 and
V(qg) > 0. Substituting Eq(A11) into the identity

f dZ’e (2,2 e(Z',2) = 8(z-2'),

PHYSICAL REVIEW Br1, 235404(2005

eXz,2)=€MOz-2)+\ eV (z,7) + N2 (2,2,
(A14)

where the zeroth-order term is

<00= S 15
q

the first-order term is found to be
e‘l'(l):—f dzlf dze 1 0(z-2z)

x eV(z1,29) € M0(z,- 2),

eiqz

and the second-order term is

6_1,(2)(2'21):_fdzlfdzze—l,(o)(zz_z')

X[e10(z-2)) €?(z,2)

+ 6—1,(1)(2 -z) e(l)(Z]_, z)].

Screened potential\NI(z,z’)

Substituting the expansiof89) and(A14) of V ande™*
into Eq.(31), one gets an expansion of the screened potential
as

V(z2)=V(z-2) +\VP(z2) +\ W (z2)  (AL5)
where the zeroth-order term is
v 1w V(O)
V(O)(z) = J dzlv(O)(Z_ 21)6—1,(0)(21) — _2 ﬂe’qz,
Lo ea)

the first-order term is
VW(z,z2) = f dz[VO(z-2z2)e*V(z,,7)

+VW(z-2)e 1Oz - 2)],

while the second-order term is
V@ (z,2') = f dz[VO(z-z2)e P (z,7)

+VW(z-2)e MV (z,7)

+VA(z-2)e1O0(z, - 2)].

Grand canonical potential Q[V,R(2),U(2)]

Using Egs. (A1), (A2), (A5), (A8), and (A1l5) for
9(z,E), dpg, 5pg, andV, we are now ready to expaitdl, start-
ing by rewriting Eq.(30) as

Q = Qq[{u:+},R(2),Uq] = N.Ug — Q4[{1.},R(2),Ug]
+ Qo[{us},R(2), U] + Q[ {u+},R(2),Up],  (A16)

one can solve order by order for the inverse dielectric func-

tion € (z,2)),

where
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— U
0;=U, J dz 5po(2) = UOL(?(’E g%(e,) + 1e1b(0)

a=t

#2232 [0P + (0P - @32>)q2]|b(q)|z) ,
q

2
Q,= %2 dzgze,)

a=t

2
= UL (76 + Ao, b0)

a=t

22X {g2(e,) + [02 () - 952)(sa>]q2}|b(q)|2) ,
q

andQ,=3 [ dzdZ 8py(2)V(z,2') 8po(2) can be written as

Qaf{:}, R@),Up] = QP [{1e},Ro, Ugl + N Q§[{1.},Ro, Uo]
+ N2 P { s}, Ro, Ugl.

The zeroth order term in the expansion(®f is

1 ~
QY = > f dzdz 5p§ (VO (z-2') 5p(2')

= Z00”S g%,

a=t

the first-order term is

PHYSICAL REVIEW B 71, 235404(2005

1 ~
Q<31>=5 f dzdZ[5pQ (VW (z,2) 5pQ(Z')

+ 2502V (z- 2) 5p(2)]
= LUpePb(0) + O(LY),

and the second-order contribution is
1 ~
9(32):5 f dzdZ[5pQ (VP (2,2) 8pQ(Z')

+25p0(2VV(2,2) 5p(2')
+28p2(2VO(z-2)5p0(2)
+ 59 (VO (z- 2) 8p(2)]

=LUoX [0 + (0¥ - 02)a?]|b(g)[?
q

viy YO

27y e

Adding up all the contributions in EA16), and dropping
contributions of ordet.%, one gets Eqs32) and(33).

The above calculations also show that E§0) can be
rewritten as

Q= Q[{us},R(2),Ug] = N.Ug

(e - 0" b(g)|?+ O(LO).

1 ~
+ f dzdZ 8pP (VO (z- 2') 5p§H(2') + O(LO).

(A17)
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