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Scaling theory of the Peierls charge density wave in metal nanowires

D. F. Urban,! C. A. Stafford,? and Hermann Grabert!
L Physikalisches Institut, Albert-Ludwigs-Universitit, D-79104 Freiburg, Germany
2Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
(Received 8 November 2006; revised manuscript received 30 January 2007; published 17 May 2007)

The Peierls instability in multichannel metal nanowires is investigated. Hyperscaling relations are estab-
lished for the finite-size, temperature, and wave-vector scaling of the electronic free energy. It is shown that the
softening of surface modes at wave vector g=2kp,, leads to critical fluctuations of the wire’s radius at zero
temperature, where kg, is the Fermi wave vector of the highest occupied channel. This Peierls charge density
wave emerges as the system size becomes comparable to the channel correlation length. Although the Peierls
instability is weak in metal nanowires, in the sense that the correlation length is exponentially long, we predict
that nanowires fabricated by current techniques can be driven into the charge-density-wave regime under

strain.
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I. INTRODUCTION

Already long ago, Frohlich! and Peierls? pointed out that
a one-dimensional metal coupled to the underlying lattice is
not stable at low temperatures. Electron-phonon interactions
lead to a novel type of ground state with a charge density
wave (CDW) of wave vector 2k (see Ref. 3 for a review).
This state is characterized by a gap in the single-particle
excitation spectrum, and by a collective mode with an asso-
ciated charge density ~pg+p; cos(2kzz), where p is the un-
perturbed electron density of the metal. Of particular interest
are incommensurate systems, where the period of the CDW
is not simply related to that of the unperturbed atomic struc-
ture. In that case, no long-range order is expected even at
zero temperature due to quantum fluctuations.

In contrast to the usual Peierls systems, metallic
nanowires* are open systems with several inequivalent chan-
nels, for which the theory has not yet been developed. Inter-
est in the Peierls transition in metal nanowires has been
stimulated by recent experiments> on nanowire arrays on
stepped surfaces. In these systems, interactions between
nanowires, mediated by the substrate, render the system
quasi-two-dimensional at low temperatures, similar to the di-
mensional crossovers commonly observed in highly aniso-
tropic organic conductors.’ However, individual freestanding
metal nanowires* represent true (quasi-)one-dimensional sys-
tems, in which the intrinsic behavior of the Peierls CDW can
be studied.

Due to quantization perpendicular to the wire axis, elec-
tron states in metal nanowires are divided into distinct chan-
nels, which are only weakly coupled. Each channel has a
quadratic dispersion relation, and starts to contribute at a
certain threshold energy, i.e., the eigenenergy E, of the cor-
responding transverse mode. This results in a sequence of
quasi-one-dimensional systems with different Fermi wave

vectors,
[2m,
kF,n= ?(EF_En) (1)

The channel Fermi wave vectors are generically not com-
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mensurate with the underlying atomic structure in nanowires
with more than one open channel.

The Peierls instability is weak in metal nanowires, ~ so
that the system is close to the quantum critical point at which
the transition from Fermi-liquid behavior to a CDW state
occurs. In the vicinity of the quantum critical point, the sys-
tem exhibits an additional length scale, the correlation length
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Here, the greek index v labels the highest occupied channel,
in which an energy gap 2A, opens, and vy, =(h/m, )k, is
the Fermi velocity of this subband. Within a hyperscaling
ansatz,'! the singular part of the energy is expected to scale
like Esing/L~§;1"Z, where L is the wire length, and the dy-
namic critical exponent takes the value z=1. Thus, Eg,,/L
~ A,%/ fivg . Near the singular point, we indeed find that the
electronic energy is given by

Esin AZ ( é g)
=~ = Y 5 3_])9_1/ b} 3
T §.09.7 L 3)

where Y(x,y,z) =In(max{x,y,z}) is a universal and dimen-
sionless scaling function, dg=(g—2kg,) is the detuning of
the perturbation wave vector from its critical value 2k,
Ly=hvp,/kgT is the thermal length at temperature 7, and
k,=1 or 2 is the degeneracy of the highest open channel v.
This universal scaling behavior is quite different from that of
a closed system with periodic boundary conditions,!>!3
where radically different behavior was found for odd or even
numbers of fermions. Nonetheless, the correlation length &
was also found to control the finite-size scaling of the Peierls
transition in mesoscopic rings.!?

In this paper, the quantum and thermal fluctuations of the
nanowire surface are calculated in a continuum model,'*
where the ionic background is treated as an incompressible,
irrotational fluid. In contrast to the semiclassical theory of
Ref. 14, which exhibited critical surface fluctuations only at
finite temperature (due to the classical Rayleigh instability),
the present fully quantum-mechanical theory exhibits critical
zero-temperature surface fluctuations at wave vector g
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=2k ,. In a finite system, these CDW correlations are found
to grow in amplitude as the wire length L approaches a criti-
cal length L. of the order of the correlation length &,. A
similar scaling is observed as the temperature is lowered, so
that Ly exceeds &,. Although &, is typically very large for
fully equilibrated structures, consistent with the fact that
Peierls distortions have not yet been observed in multichan-
nel nanowires, it is predicted that nanowires of dimensions
currently produced in the laboratory can be driven into the
CDW regime by applying strain.

This paper is organized as follows. Section II summarizes
the (standard) Peierls theory for a one-dimensional metal
with a half-filled band, and extends it to multichannel wires.
A description of the deformation of a nanowire through sur-
face phonons is given in Sec. III. The correlation length £ is
introduced in Sec. IV, and the scaling relation (3) is estab-
lished. Section V examines the critical surface fluctuations,
and consequences for different materials are discussed. Fi-
nally, a summary and discussion are given in Sec. VL.

II. PEIERLS INSTABILITY

Consider the ground state of a one-dimensional linear
chain of atoms, with lattice constant a and periodic boundary
conditions. In the presence of electron-phonon interactions, it
is energetically favorable to introduce a periodic lattice dis-
tortion with period N=m/kp; this effect is known as the
Peierls instability.” The lattice distortion opens up an energy
gap 2A in the electronic dispersion relation at the Fermi level
Ep, so that the total electronic energy is lowered. If A<Ep,
then the gain in energy is given by?

Egin 1 A?

)3 el

~ — logl —|-=[+0|—]. &)
L m2E kg 4E;) 2 Ep

The size of the gap can be extracted from an energy balance:
Let the increase of the elastic energy due to the deformation
be given by E../L=ab’ where b is the amplitude of the
distortion. On the other hand, A is defined through the matrix
element of the perturbation coupling states with longitudinal
wave vector kp; it is linear in b and we can set A=Ab. By
finding the minimum of SE(b)=Egy,+Ecoq, We can derive
the optimal value of the distortion amplitude b and from this
derive the size A of the gap,

A =4Ep exp(- 2maE/Aky). (5)

The analysis of the Peierls instability in a one-
dimensional metal can be extended to the case of a multi-
channel system. While other instabilities of the Fermi
liquid—induced by electron-electron interactions—compete
with the Peierls instability in purely one-dimensional
systems,’ their importance decreases as the number of chan-
nels increases,!’ so that electron-electron interactions can, in
a first approximation, be neglected in multichannel nano-
wires. Moreover, electron-electron interactions are strongly
screened in s-orbital metal nanowires with three or more
conducting channels.!®!7 Hence, including electron-electron
interactions in the calculation will not lead to any qualitative
change (except in the limit of very few conduction channels),
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whereas electron-phonon interactions do.'® We therefore
consider only electron-phonon coupling in this paper.

For any given channel n, a perturbation of wave vector
q=2kr, will open a gap 2A, at the Fermi surface in the
energy dispersion of this channel. The energy gain E,, , and
gap size 2/, are then given by Egs. (4) and (5), respectively,
with kg replaced by kg, and Er replaced by hzk;n/ 2m,. The
greatest effect will be seen close to the opening of the high-
est occupied channel (i.e., n=v), where the channel Fermi
wave vector kp, is small. Note that the same perturbation
(with g=2kp,) will also modify the dispersion relations of
lower-energy channels n’ with E,, <E,, but due to the finite
spacing of the threshold energies, this modification will oc-
cur within the Fermi sea and there will be little net effect.'®

The standard Peierls theory uses periodic boundary con-
ditions for the wave functions. Its extension to the multi-
channel case cannot be directly applied to a metallic nano-
wire of finite length L. The nanowire is part of a much larger
system including the leads, and the longitudinal wave vectors
k, in the subbands are not restricted to multiples of T as in
the case of an isolated system with periodic boundary con-
ditions. Therefore, a perturbation of the nanowire with wave
vector ¢ does not only couple states k, and &, that exactly
obey k,=k,+q. Instead, the state k, is coupled to a range of
k, states proportional to 1/L. The dispersion relation remains
smooth while, with increasing wire length, it develops a
smeared-out quasigap, and only in the limit L—o do we
recover the Peierls result with a jump at kg,,."°

III. SURFACE PHONONS

We describe the wire in terms of the nanoscale free-
electron model (NFEM),'%?° treating the electrons as a Fermi
gas confined within the wire by a hard-wall potential. The
ionic structure is replaced by a uniform (jellium) background
of positive charge, and we assume that this ionic medium is
irrotational and incompressible. The approximations!#1620 of
the NFEM require strong delocalization of the valence elec-
trons, good charge screening, and a spherical Fermi surface,
conditions met in alkali metals and, to a lesser extent, noble
metals such as gold.

In this continuum model, the ionic degrees of freedom are
completely determined by the surface coordinates of the
wire. Let us consider an initially uniform wire of radius R,
and length L which is axisymmetrically distorted. Its surface
is given by the radius function

Rz)= Ro(l +> bq(ael‘ﬂ), (6)
q

where the time-dependent perturbation is written as a Fourier
series with coefficients b,(t). Since R(z,?) is real, we have
bq=bf and we require that the volume of the wire is un-
changed by the deformation. Other physically reasonable
constraints are possible and will be discussed in detail in Sec.
V.

The kinetic energy of the ionic medium is given by'*
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Here, the mode inertia m is a function of wire radius and
phonon wave vector and reads

2mRylo(qRy)
m(C],Ro) Pion qll(qR()) ’ (8)
where p;,, is the ionic mass density, and [, and I, are the
modified Bessel functions of zeroth and first order,
respectively.”! Considered as a function of g, the mode iner-
tia has a singularity ~1/¢> at ¢g=0 and is monotonically
decreasing, with m~ 1/q for large q.

Within the Born-Oppenheimer approximation, the poten-
tial energy of the ions is given by the grand canonical poten-
tial ) of the confined electron gas. A linear stability analysis
of cylindrical wires determining the leading-order change in
Q) due to a small perturbation was recently presented in Ref.
10: & is quadratic in the Fourier coefficients b, of the de-
formation, and can be written as

6(2
= > |b,|*alq.Ro, L. T) + 0( ) 9)

L =0

where the terms of order A\z/L include nondiagonal contri-
butions which can be neglected if the wire is long enough.?
The explicit analytical expression for the mode stiffness « is
given in Appendix A. Here, we are interested in the general
behavior of the mode stiffness as a function of the perturba-
tion wave vector ¢ for a given radius R, length L, and tem-
perature T: a(g) is a smoothly increasing function, with a L-
and T-dependent dip at g=2k,, where v is the index of the
highest open channel (see Appendix A). Therefore, we for-
mally split & into a smoothly varying term and one contain-
ing the singular contribution of channel v,

&= Agmooth + agnzg (10)

The smooth part can be thought of as the sum of a Weyl
contribution,'* which describes the effects of surface tension
o, and curvature energy 7, plus an electron-shell
correction, '

~ 6500k}

2Ry, + 2R (0, Ry — (11)

whereas the singular part describes the onset of the Peierls
instability in channel v. At zero temperature, it is given by'’

— 2
Asmooth = — ’YV)q + ghell

2m, 4k, E;, 2kp,+q
smg(q’RO’L) |: n‘

K2 q 2kp,—

- F((sz,V+ q)L) + F(|2kF,V_ q|L):| 5

(12)

where F(x)=Ci(x)—sin(x)/x and Ci(x) is the cosine integral
function.?? The finite-temperature mode stiffness is evaluated
numerically by computing the integral

a(T) = de( ) a(E),

where f(E) is the Fermi function and «(E) is obtained from
the zero- temperature results by replacing kg, by kg,
T(E-£)]"
Combmlng the klnetic energy (7) and potential energy (9)
yields a Hamiltonian for surface phonons, H,=2 ﬁwq(d;]dq
+ 2) with frequencies

(13)

a(q’RO’ L7 T)

w(q,RO,L, T)= .
Rim(q.R)

(14)

These axisymmetric surface phonons correspond to the
longitudinal-acoustic mode of the nanowire. From Egs. (8),
(10), and (14), we infer that w(g) is a smoothly increasing
function of ¢, with a dip at g=2kj,. As expected for acoustic
phonons, it is linear for small g. The L-dependent softening
of the phonon modes with wave vector 2k, defines a criti-
cal length L, for which w(2kp,)=0.

A plot of w(q) for L=L, at zero temperature is shown in
Fig. 1(a). The inset shows a close-up of the minimum and
compares different wire lengths, where the curves are hori-
zontally offset for clarity. The temperature dependence of w
is illustrated in Fig. 1(b), concentrating on the vicinity of ¢
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FIG. 2. (Color online) Crossover from T scal-
ing to L scaling: The scaling function Y(x,y,z) is
plotted as a function of the ratio y/z=Ly/L for
i fixed values of y=¢,/L (red curves) and z
=¢,/Ly (green curves) at x=d8g&,=0. For all
curves, R0=8k;1.
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y/z=LJL

=2ky, (again, the curves are horizontally offset). With in-
creasing temperature, the dip in w disappears, and the curve
becomes smoother.

IV. SCALING RELATIONS

The opening of the Peierls gap in subband v introduces a
new energy scale, given by the gap 2A, for an infinitely long
wire. A, is determined by the matrix element of the pertur-
bation coupling states with longitudinal wave vector *kg ,
and is linear in the distortion amplitude b,. The perturbation
potential matrix element is calculated in Appendix B, and we
find that A, =2E,b,.

On the other hand, the energy cost for creating a surface
modulation with wave vector ¢ is determined by the smooth
part of the mode stiffness, so that 6E o/ L= moon(q)|by|*
Following the arguments of Sec. II, we can now calculate the

length scale &,, obtaining
h* \ mk
exp (_) 77 F,Vasnéooth , (15)
2m, 2k,E

& _%_ 1
"TO2A,  dkp,

where we have used Eq. (5). Introducing the correlation
length &, allows us to derive the finite-size, temperature, and
wave-vector scaling of the electronic free energy near the
critical point of the Peierls instability, given by g=2k ,, L
— o, T=0, and weak electron-phonon coupling.

Finite-size scaling. First, we examine the mode stiffness
at zero temperature and for g=2kg, as a function of wire
length. Starting from Egs. (10) and (12), we take the limit
q—2kp,, and get

4k, E,
7ThUF,V

=2k
a(L)|q T_(I;'V = Usmooth —

[In(4kp,L) = c;], (16)

where ¢;=1-yp+F(4kp ,L)=0.42. Here, y;=0.577 is the
Euler-Mascheroni constant, and we have used the fact that
F(x)<<1 for x> 1. This expression for a(L) can further be
simplified by the use of Eq. (15), so that

100

_ 4x,E, ,
a(L)|"‘T2:kg~V =ﬂ2—v’}i}[ln(§z> +c1]. (17)

This defines the critical length L. for which « takes the value
zero,

L.=e“ 1§, ~ 1.52€,. (18)

Note that the critical length is of the same order of magni-
tude as the correlation length.

Wave-vector scaling. Now let 6g=(q—2ky,) be the de-
tuning of the perturbation wave vector from its critical value
2k ,. At zero temperature and in the limit L — 0, we expand
the mode stiffness as a function of dg and obtain

L=L, _ 4B,
a(oq)| = — In[¢,89| + O(3g).  (19)
Again, the result was written in a compact form by the use of
Eq. (15).

Temperature scaling. Finally, we examine the effect of
finite temperature for a wire of infinite length and a pertur-
bation of wave vector 2kg,. The main effect of finite tem-
perature is to smear out the Fermi surface, so that the critical
wave vector ¢ is detuned by Sqp=2(kp,—kg,) with kg,
E[ZZe(E—E,,)]_m. Starting from the scaling behavior for
finite &g detuning [Eq. (19)], we calculate «(7) for small T
from Eq. (13) by linearizing E—Ep=hvy (kg ,—kr,) and
find

a(n)| e =
|q=2kF,V

4KVEi{ ’ £,
In
mhog, hvg,B

with a numerical constant ¢,=—"vyg+In 7=0.57.

Combining the three scaling relations for length, pertur-
bation wave vector, and temperature, Eqs. (17), (19), and
(20), respectively, we prove Eq. (3) for the singular part of
the electronic energy.

Finite temperature introduces a thermal length Ly
=Bhvg,. Changing L; has an equivalent influence on the
system properties as changing the length of the wire L. Near
the critical point, we observe a crossover between finite-T

+ C2:| N (20)
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scaling and finite-L scaling, depending on the ratio L;/L (see
Fig. 2). The smaller of the two lengths dominates the behav-
ior of the singular part of the electronic energy. As long as
L;<L, a change of L, even by orders of magnitude, has only
a small effect on Y, whereas the system is sensitive to small
changes in Ly and shows T scaling. The situation is reversed
for Ly>L: In this case, a change in temperature results in
only small changes of Y, whereas the singular part of the
energy depends strongly on L and shows finite-length scal-
ing. These two different cases are illustrated in Fig. 2 by the
two sets of curves for different fixed values of L and Ly,
respectively.

So far, we have considered ideal nanowires without dis-
order. Disordered structures exhibit an additional length
scale, the electron elastic mean free path €. The scaling
theory we have derived allows us to predict that the effect of
disorder is to cut off the logarithmic scaling of the Peierls
CDW instability, exactly like the thermal length or wire
length. We thus infer that the length-dependent criterion for
the emergence of the Peierls CDW in metal nanowires is
given by

L. <L,L;¢, (21)

where the critical length L. [Eq. (18)] is of the order of the
correlation length §,. Increasing temperature leads to a de-
creasing thermal length, and therefore destroys the phenom-
enon at sufficiently high 7. Increasing disorder has a corre-
sponding effect.

V. SURFACE FLUCTUATIONS

The softening of the surface phonon modes with wave
vector g=2kp, leads to critical surface fluctuations. Given
the mode stiffness « and phonon frequency w(g), the fluc-
tuations about the cylindrical shape are given by?

(RORO) 1 f ﬁw(m{ 1 +1}eiqz
R; 2wl q a(g) | P9 -1 "2 '

(22)

Figure 3 shows the correlations for different wire lengths at
zero temperature. Fluctuations with g=2kf, increase with
increasing wire length. Note that these CDW correlations
may be pinned by disorder, or at the wire ends.? The corre-
lations shown in Fig. 3 are representative of regions far from
an impurity or wire end.

For large z, we can use a saddle-point approximation to

estimate the integral in Eq. (22), and find
R(z)R(0 _
M o os(2kF!Vz)K0(\’12 log(LC/L)§>, (23)
0

where K, is the modified Bessel function of the second
kind?® of order 0. Its asymptotic behavior is given by?’

—yp—logx/2 forx<1

/ 24
ze"‘ forx>1. (24)
2x

Depending on the ratio of the wire length L to the critical
length L., we can distinguish two regimes: for L<<L_, the

KO(X) ~
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FIG. 3. (Color online) CDW correlations for various values of
L/L. at T=0 for a wire with R=4.42k;1. The critical length is L.
~ 1560k;l. Curves offset vertically for clarity.

prefactor of z/L in the argument of K in Eq. (23) is large
and the correlations decay exponentially for sufficiently large
z. On the other hand, if L~ L., our theory predicts a loga-
rithmic decay of the correlations. Note that the ratio L/L,
determines the crossover from a regime where the harmonic
approximation about a Fermi liquid is valid (L<L,) to that
of a fully developed CDW (L>L,.). The harmonic approxi-
mation, which we have used in our calculation, breaks down
at L=L,., where the wire can no longer be treated as a cylin-
der with small perturbations.

The correlation length & is a material-specific quantity,
since it depends exponentially on the smooth contribution
(I1) to the mode stiffness [see Eq. (15)]. As discussed in
detail in Ref. 28, the material-specific surface tension and
curvature energy can be included in the NFEM through a
generalized constraint on the allowed deformations of the
wire,

N= k?pV - nsk%S + n.krC = const. (25)

Here, V is the volume of the wire, S its surface area, and C its
integrated mean curvature. The constraint N'=0 restricts the
number of independent Fourier coefficients in Eq. (6), and
allows b to be expressed in terms of the other Fourier coef-
ficients. This results in a modification of the smooth part of
the mode stiffness (see Appendix A). Through an appropriate
choice of the dimensionless parameters 7, and 7,, the sur-
face tension and curvature energy can thus be set to the ap-
propriate values for any given material.”®

The upper panel of Fig. 4 shows the correlation length
calculated using the material parameters?® for Na and Au.
For clarity, the plot is restricted to the cylindrical wires of
so-called magic radii that prove to be remarkably stable even
when allowing symmetry-breaking deformations.?$3% These
wires have conductance values G/Gy=1,3,6,12,17,
23,34,42,51,..., where G0=2€2/h is the conductance
quantum.®' Arrows point to the positions of the most stable
wires, defined as those with the longest estimated lifetimes,32
which are near the minima of the shell potential for straight
cylindrical wires, shown in the lower panel of Fig. 4.
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FIG. 4. (Color online) Upper

panel: Correlation length &, for
Na and Au. For clarity, the plot is
restricted to wires of so-called
magic radii, i.e., wires of conduc-
tance G/Gy=1,3,6,12,..., that
were shown to be remarkably
stable even when allowing
symmetry-breaking deformations
(Refs. 10 and 30). The lower

panel shows the shell potential,
and arrows mark the geometries
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The maximum length of freestanding metallic nanowires
observed so far in experiments is that of gold wires produced
by electron beam irradiation of thin gold films in ultrahigh
vacuum,? for which lengths of L~ 3—15 nm are reported. In
those experiments, no sign of an onset of the Peierls CDW
was seen, presumably indicating that L <{. However, since
the correlation length depends exponentially on the wire ra-
dius, we predict that nanowires of currently available dimen-
sions can be driven into the CDW regime by applying strain.
A tensile force of order of 1 nN can change ¢ by orders of
magnitude, and thereby drive the system into the CDW re-
gime as soon as the condition (21) is met. Note that since ky
is of order of 1 A~! for Na and Au, the thermal length L; at
room temperature is of order of 100 A for Na and twice as
large for gold, comparable to the lengths of the longest free-
standing wires currently produced. By contrast, the elastic
mean free path can be several times as long* and electron
microscope images of gold nanowires>* show perfectly regu-
lar and disorder-free atomic arrangements. Surface rough-
ness does not play a role in the parameter regime we con-
sider, where electron-shell effects dominate over ionic
ordering. Thus, CDW behavior should be observable at room
temperature in freestanding metal nanowires under strain, in
contrast to the behavior of quasi-one-dimensional organic
conductors,’ where CDW behavior is observed only at cryo-
genic temperatures.

VI. SUMMARY AND DISCUSSION

In conclusion, we have presented a scaling theory of the
Peierls CDW in multichannel metal nanowires. Near the
critical point, scaling relations for the L, ¢, and T dependence
of the singular part of the free energy, which drives the
Peierls instability, were established. A hyperscaling ansatz
was verified and the universal scaling function was analyzed,
which was found to be logarithmic. The crossover from a
regime where the harmonic approximation about a Fermi
liquid is valid (L<L,) to that of a fully developed CDW
(L>L,) occurs at a critical length of the order of the corre-
lation length &, which is material dependent. We predict that
the Peierls CDW should be observable at room temperature
in currently available metal nanowires under an applied
strain.

The critical length is shortest in materials whose surface
tension is small in natural units (i.e., in units of E Fk%). No-

with the longest estimated lifetime
(Ref. 32).

table in this respect® is Al with o,=0.0018E Fk%—, some five
times smaller than the value for Au. Although Al is a multi-
valent metal, it has a very free-electron-like band structure in
an extended-zone scheme, and thus may be treated within the
NFEM, although the continuum approximation is more se-
vere. We thus predict that Al should be an ideal candidate for
the observation of the Peierls CDW.

Our findings on the finite-size scaling of the Peierls CDW
in metal nanowires are in contrast with previous theoretical
studies'>!3 of mesoscopic rings: For spinless fermions in a
one-dimensional ring, the Peierls transition was found to be
suppressed for small systems when the number of fermions
is odd, but enhanced when the number is even. Obviously, no
such parity effect occurs in an open system, such as a metal
nanowire suspended between two metal electrodes; we find
that the CDW is always suppressed in nanowires with L
< ¢,. Nonetheless, the correlation length & was also found to
control the (very different) finite-size scaling in mesoscopic
rings.!3

The finite-size scaling of the Peierls CDW in metal nano-
wires is similar to that of the metal-insulator transition in the
one-dimensional Hubbard model.** In both cases, there is no
phase transition in an infinite system, because the critical
electron-phonon coupling and on-site electron-electron re-
pulsion are 0* in each case. However, for parameters such
that the gap 2A in an infinite system is sufficiently small, the
system is close to a quantum critical point,'3* and the cross-
over from Fermi-liquid behavior to a Peierls CDW or Mott
insulator, respectively, can be described within hyperscaling
theory.
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APPENDIX A: LINEAR STABILITY ANALYSIS

This appendix gives details on the linear stability analysis
(see Ref. 10) which determines the leading-order change in
the grand canonical potential ) of the electron gas due to a
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FIG. 5. (Color online) The mode stiffness «
computed from Egs. (A3)—(A5) (solid curves).
The dashed curves show the Weyl approximation
to a [first two terms on the rhs of Eq. (11)]. The
results for gold and for an idealized free-electron

0.6 — Ng=0, n=0 (const. vol.)
o L — Nng=0.76, N=-0.11 (Au)
L o2f e } “
~ - Ry A ’ ,
A f
| | | | \

metal are shown; in each case, the radius is Ry
1 =5.75k;" and the length is L=1000k;".

small deformation of a cylindrical nanowire. Since the nano-
wire is an open system connected to macroscopic metallic
electrodes at each end, it is naturally described within a scat-
tering matrix approach. The Schrodinger equation can be ex-
panded as a series in the perturbation, and we solve for the
energy-dependent scattering matrix S(E) up to second order.
The electronic density of states can then be calculated from

1 .95 a8t
D(E) = z—mTr{s (E)a—E - a—ES(E)}, (A1)

where a factor of 2 for spin degeneracy has been included.
Finally, the grand canonical potential () is related to the den-
sity of states D(E) by

Q=—kyT f dED(E)In[1 + e~ E-#/ksT], (A2)

where kg is the Boltzmann constant, 7 is the temperature,
and u is the chemical potential specified by the macroscopic
electrodes. We find that the change & due to the deforma-
tion of an initially axisymmetric geometry in leading order is
quadratic in the Fourier coefficients b, of the deformation
[see Eq. (6)] and can be written as stated in Eq. (9), defining
the mode stiffness a(q,Ry,L,T). It is convenient to decom-
pose « into three contributions, &= agize+ Anona+ Aeon- The
coupling between channels mediated by the surface phonons
determines gy, coming from scattering into the same chan-
nel [Eq. (A3)], and apgng, coming from scattering between
different channels [Eq. (A4)]:

1
adiag(q’RO’L) = 7_7_2 6(EF - En){ ]2EnkF,n

4B | 2kp, +
_Ion [m‘ ZEaT N B2k, + L)
q 2kp,—q
+F(|2kp,n—q|L)”, (A3)

1.2

1 EnEn'
anond(quO»L) == ; E fn,n’e(EF_ En) 16kF,nE _E
n#n'
4EnEn/ q2+Enr _En+2qun
+ In| = .
q q +En’ _En_zqu,n
4E.E,
+O(E;-E,) [F(lg — kg, — kg |L)
—F((q+kpy+kp )L (s (A4)
1
acon(q7R0) = ;2 e(EF
1+ (9. - nRokp) (qlkp)?
CE)AE Ky, (7. = nRokr) (g/kp)
1- nv/(ROkF)
(AS)

Here f,, =1 for two channels having the same azimuthal
symmetry and f,, =0 otherwise. The function F(x)=Ci(x)
—sin(x)/x smoothens the logarithmic divergences so that
@giag aNd apoqg are continuous functions having minima of
length-dependent depth at g=2k,, and g=kg,+kg,, respec-
tively. The third contribution [Eq. (A5)] arises due to enforc-
ing the constraint (25) on allowed deformations.

The contribution to Eq. (A4) from evanescent modes with
E, >Ep gives rise to the leading-order g dependence of
Qonds Which is quadratic. This term therefore essentially cap-
tures the change of surface and curvature energy [see Eq.
(11)]. Figure 5 compares the mode stiffness @, computed
from Egs. (A3)—(A5), to the Weyl approximation [first two
terms on the right-hand side (rhs) of Eq. (11)]. Here, R,
=5.75k;' and L=1000k}". Both the results for Au (7,=0.76,
7,=-=0.11) and for a pure constant-volume constraint (7,
=17,=0) are shown. In both cases, the overall ¢> dependence
of « for large ¢ is evident, and consequently, the minimum at
q=2kr,~0.56kg is deeper than the other minima.

When examining the softening of phonon modes, the
overall increase of a(g) with g allows us to concentrate on
the qo=2kr , mode, where v labels the highest open channel.
This mode will always be the dominant one. In general, the
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mode stiffness also shows less-pronounced minima at other
values g > g, due to the lower-lying channels, but these con-
tributions are less singular than the g, mode. It is therefore
possible to approximate « by a smooth contribution «g? plus
the explicit terms of Eq. (A3) for the highest open channel.

APPENDIX B: PERTURBATION POTENTIAL MATRIX
ELEMENTS

Consider free electrons confined within a cylindrical
nanowire of radius R, and length L by a step potential V(r)
=V,0(r—R,), where 6 is the step function. The transverse
eigenfunctions in polar coordinates are given by 1//$n(r,cp)
=(2m)2¢imey. (r), where the radial function y,,,(r) reads

—
Jm(V’Emnr), r< RO
Xmn = Nmn Jm(\“/E_mnRO)Km(V VO - Emnr) (B 1)
, T > Ro.

Km(\“/v() - EmnRO)

Here, N,,, is a normalization factor, J,, is the Bessel function
of order m, K,, is the modified Bessel function of the second
kind of order m, and for simplicity of notation, we use the
convention #%/2m,=1. The transverse eigenenergies E,,, are
determined by the continuity of d,x,,,/ X, at ¥=Ry. An axi-
symmetric perturbation of the wire changes the confinement
potential by

PHYSICAL REVIEW B 75, 205428 (2007)

SV(r,z) = Vol 0(r— Ry— SR(2)) — 0(r— Ry)],  (B2)

where the variation in radius is given by J&R(z)/R,
=2, b,e'? and the perturbation wave vectors g are restricted
to integer multiples of 277/ L. We expand the matrix elements
of 6V with respect to the unperturbed eigenfunctions
V,u(r,@,2)=L""e*lys (r, @) to first order in b, and get

(mnk|SVliiitky = = 8,,VoRoXmn(Ro) X Ro)

- ei(E-k+q)L
X 2 by—/——. (B3)
¢ i(k=k+q)L
Taking the limit Vy— %, we get
_ 1 — pilk=k+q)L
lim (mnk| V|miik) = 2\ Ep,E i > by~ (B4)
Vo—° q ilk—k+q)L
In the limit of L— o0, we have
lim <mnk| 5V|mﬁ]:> == 2\ EmnEmrqualz,k—q (BS)
V()*)OO
L—®

and recover a coupling of states with k=k+g, only.
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