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Theory of Metastability in Simple Metal Nanowires
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Thermally induced conductance jumps of metal nanowires are modeled using stochastic Ginzburg-
Landau field theories. Changes in radius are predicted to occur via the nucleation of surface kinks at the
wire ends, consistent with recent electron microscopy studies. The activation rate displays nontrivial
dependence on nanowire length, and undergoes first- or second-order-like transitions as a function of
length. The activation barriers of the most stable structures are predicted to be universal, i.e., independent
of the radius of the wire, and proportional to the square root of the surface tension. The reduction of the
activation barrier under strain is also determined.
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FIG. 1. Electron-shell potential V�R� at zero temperature. The
top axis shows the conductance values of the most stable wires in
units of the conductance quantum, G0 � 2e2=h.
Metal nanowires have attracted considerable interest in
the past decade due to their remarkable transport and
structural properties [1]. Long gold and silver nanowires
were observed to form spontaneously under electron irra-
diation [2– 4], and appear to be surprisingly stable; even
the thinnest gold wires, essentially a chain of atoms, have
lifetimes of the order of seconds at room temperature [5].
Nanowires formed from alkali metals are significantly less
long-lived, but exhibit striking correlations between their
stability and electrical conductance [6,7]. That these fila-
mentary structures are stable at all is rather counterintuitive
[8,9], but can be explained by electron-shell effects [6–10].
Nonetheless, these nanostructures are only metastable, and
understanding their lifetimes is of fundamental interest
both for their potential applications in nanoelectronics
and as an interesting problem in nanoscale nonlinear
dynamics.

In this Letter, we introduce a continuum approach to
study the lifetimes of monovalent metal nanowires. Our
starting point is the nanoscale free-electron model [11], in
which the ionic medium is treated as an incompressible
continuum, and electron-confinement effects are treated
exactly, or through a semiclassical approximation [8–10].
This approach is most appropriate [9] for studying simple
metals, whose properties are determined largely by the
conduction-band s electrons, and for nanowires of ‘‘inter-
mediate’’ thickness: thin enough so that electron-shell
effects dominate the energetics, but not so thin that a
continuum approach is unjustified. The inclusion of ther-
mal fluctuations is modeled using a stochastic Ginzburg-
Landau classical field theory, which provides a self-
consistent description of the fluctuation-induced thinning/
growth of nanowires.

Our theory provides quantitative estimates of the life-
times for alkali-metal nanowires with electrical conduc-
tance G in the range 3 � G=G0 � 100, where G0 � 2e2=h
is the conductance quantum. In addition, we predict a
universality of the typical escape barrier for a given metal,
independent of the wire radius, with a value proportional to����
�

p
, where � is the surface tension of the material. Our

model can therefore account qualitatively for the large
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difference in the observed stability of alkali-metal versus
noble-metal nanowires. It also predicts a sharp decrease of
the escape barrier under strain.

We consider a cylindrical wire suspended between two
metallic electrodes, with which it can exchange both atoms
and electrons. The resulting energetics is described through
an ionic grand-canonical potential

�a � �e ��aN a; (1)

where �e is the free energy for a fixed number N a of
atoms and �a is the chemical potential for a surface atom
in the electrodes. In the Born-Oppenheimer approxima-
tion, �e is just the electronic grand-canonical potential,
and can be written as a Weyl expansion plus an electron-
shell correction [10]

�e � �!V � �S �
Z L

0
dzV�R�z�	; (2)

where V , S, and L are, respectively, the volume, surface
area, and length of the wire, ! and � are material-
dependent coefficients, and V�R�, shown in Fig. 1, is a
mesoscopic electron-shell potential [10] that describes
electronic quantum-size effects.

In the presence of thermal noise, a wire’s radius will
fluctuate as a function of time t and position z measured
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along the wire’s axis: R�z; t� � �R���z; t� for a wire of
radius �R at zero temperature. The wire energy (1) may be
expanded as

�a� �R;�	 � �a� �R� �H ��	; (3)

where H ��	 is the energy of the fluctuations. Keeping
only the lowest-order terms in @z�, one finds

H ��	 �
Z L

0
dz
�
�
2
�@z��2 �U���

�
; (4)

where � � 2�� �R and U��� is an effective potential.
A (meta)stable nanowire is in a state of diffusive equi-

librium:

�a � �cyl� �R� � V a

�
�
�R
�!�

1

2� �R

dV� �R�

d �R

�
; (5)

where �cyl is the chemical potential of a surface atom in a
cylindrical wire [10] and V a is the volume of an atom.
Using Eq. (5) in Eq. (1), one finds the effective potential

U����V� �R����V� �R��
��
�R
�2�

�
��

�2

2 �R

�
dV

d �R
: (6)

A stable wire must satisfy U0�0� � 0 and U00�0�> 0. The
first condition is satisfied automatically. The second con-
dition is equivalent to the requirement d�cyl=d �R> 0, and
was previously used to determine the linear stability of
metal nanowires [9]. The most stable wires correspond to
the minima of V�R� (cf. Fig. 1); however, the stable zones
span finite intervals of radius about the minima [9].

The radius fluctuations ��z; t� due to thermal noise can
be treated as a classical field on �0; L	, with dynamics gov-
erned by the stochastic Ginzburg-Landau (GL) equation

@��z; t�
@t

� �
@2�

@z2
�

@U
@�

� �2T�1=2��z; t�; (7)

where ��z; t� is unit-strength spatiotemporal white noise.
The zero-noise dynamics is gradient, that is, _� �
��H =�� at zero temperature. In (7), time is measured
in units of a microscopic time scale describing the short-
wavelength cutoff of the surface dynamics [5,9] which is of
order the inverse Debye frequency ��1

D .
At nonzero temperature, thermal fluctuations can drive a

nanowire to escape from the metastable configuration � �
0, leading to a finite lifetime of such a nanostructure. The
escape process occurs via nucleation of a ‘‘droplet’’ of one
stable configuration in the background of the other, sub-
sequently quickly spreading to fill the entire spatial do-
main. A transition from one metastable state to another
[12] must proceed via a pathway of states, accessed
through random thermal fluctuations, that first goes ‘‘up-
hill’’ in energy from the starting configuration. Because
these fluctuations are exponentially suppressed as their
energy increases, there is at low temperature a preferred
transition configuration (saddle) that lies between adjacent
minima. The activation rate is given in the T ! 0 limit by
09060
the Kramers formula [13]

�� �0 exp���E=T�: (8)

Here �E is the activation barrier, the difference in energy
between the saddle and the starting metastable configura-
tion, and �0 is the rate prefactor.

The quantities �E and �0 depend on the microscopic
parameters of the nanowire through � and the details of the
potential (6), on the length L of the wire, and on the choice
of boundary conditions at the end points z � 0 and z � L.
Simulations of the structural dynamics under surface self-
diffusion [10] suggest that the connection of the wire to the
electrodes is best described by Neumann boundary con-
ditions, @z�j0;L � 0. These boundary conditions force nu-
cleation to begin at the end points, consistent with
experimental observations [4].

The saddle configurations are time-independent solu-
tions of the zero-noise GL equation [13], and can be
obtained by numerical integration of Eq. (7) at T � 0.
However, we find that for many of the metastable wires,
the effective potential U��� can be approximated locally
by a cubic potential

U������ � �� ~�� �
�
3
� ~���

3; (9)

where ~�� �
���
�
�

q
�� and �;� > 0. The potential U���

�U���� biases fluctuations toward smaller (larger) radii. It
is useful to scale out the various constants in the model by
introducing the dimensionless variables x � z=L0 and u �

��=��1=2 ~�, where L0 � �1=2=����1=4 and E0 �

�1=2�5=4=�3=4 are characteristic length and energy scales.
The energy functional then becomes

H �u	
E0

�
Z ‘

0

�
1

2
�u0�2 � u�

1

3
u3
�
dx; (10)

where ‘ � L=L0 and u0 � @u=@x.
Metastable and saddle configurations are stationary

functions of Eq. (10), and therefore obey the Euler-
Lagrange equation u00 � �1� u2. With Neumann bound-
ary conditions, the uniform stable state is the constant state
us � �1, and there exists a uniform unstable state uu �
�1. We will see that the latter is the saddle for ‘ < ‘c �
�=

���
2

p
. At ‘c a transition occurs [14], and above it the

saddle is nonuniform. It consists of an ‘‘instanton’’ local-
ized at one end of the wire, and is given by [15]

u�x� �
2�m�����������
��m�

p �
3�����������
��m�

p dn2
�

x���
2

p
��m�1=4

								m
�
; (11)

where dn �� j m� is the Jacobi elliptic dn function with
parameter m, with 0 � m � 1, and ��m� � m2 �m� 1.
Its half period is given by K�m�, the complete elliptic
integral of the first kind, a monotonically increasing func-
tion of m. Equation (11) satisfies the Neumann boundary
condition when
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FIG. 2. The activation energy �E as a function of the wire
length L, for the cubic potential with Neumann boundary con-
ditions (top). The dashed line indicates the critical wire length Lc
at which the transition takes place. The bottom panel shows the
prefactor �0, and the inset displays the activation barrier for the
full potential U��� for kFR0 � 12:79, exhibiting a succession of
first order phase transitions.

FIG. 3. The activation energy �E1 as a function of radius for a
typical stable zone in Au. Solid curve: numerical result for the
full potential U���, Eq. (6); dashed curve: result from Eq. (13)
using the best cubic-polynomial fit to U���. The wire radius is
related to the tensile stress (upper axis).

PRL 95, 090601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
26 AUGUST 2005
‘ �
���
2

p
��m�1=4K�m�; (12)

which (taking m ! 0�) leads to ‘c � �=
���
2

p
. As ‘ ! ‘�c ,

dn �xj0� ! 1, and the nonuniform saddle reduces to the
uniform state uu � �1. This is the saddle for all ‘ < ‘c.

When the saddle is constant (‘ � ‘c), the activation
barrier scales linearly with (reduced) length ‘: �E=E0 �
�4=3�‘. Above ‘c, it is expressible in terms of the complete
elliptic integrals of the first kind K�m� and the second kind
E�m�:

�E
E0

�

�
2�3m�3m2�2m3

3��m�3=2
�
2

3

�
‘

�
6

���
2

p

5��m�1=4

�
2E�m��

�2�m��1�m�

��m�
K�m�

�
: (13)

As ‘ ! 1 (corresponding to m ! 1�), �E=E0 !

12
���
2

p
=5. More generally, we denote the asymptotic value

limL!1�E�L� � �E1. The activation barrier for the en-
tire range of ‘ is shown in Fig. 2.

Calculation of the prefactor �0 in the Kramers transition
rate formula is a much more involved matter. It generally
requires an analysis of the transverse fluctuations about the
extremal solutions. The general method for determining �0

has been discussed elsewhere [14,15]; here, we just present
results (in units of the Debye frequency �D). For ‘ < ‘c,
we find

�<
0 �

1

�
sinh�‘

���
2

p
�

sin�‘
���
2

p
�
; (14)

which diverges as ‘ ! ‘�c , with a critical exponent of 1=2.
The divergence arises from a soft mode; one of the eigen-
modes corresponding to small fluctuations about the saddle
has vanishing eigenvalue at ‘c. This divergence, and its
meaning, are discussed in detail in [15].

For ‘ > ‘c, the prefactor is

�>
0 �

2�m� 2
����������������������������
4m2 �m� 1

p

4���m�3=8

�

�����������������������������������������������������������������������������
�1�m� sinh�2��m�1=4K�m�	

��m�E�m� � �1�m��2�m�K�m�=2

s
: (15)

This also exhibits a divergence with a critical exponent of
1=2 as ‘ ! ‘�c . The prefactor over the entire range of ‘ is
shown in Fig. 2.

The second-order-like transition in activation behavior
exhibited in Fig. 2 is interesting, but generally holds only
for transitions where the potential U��� can be locally
approximated by a smooth potential of quartic or lower
order [15]. For some of the minima of Fig. 1, this is not the
case, and the wire instead exhibits one or more first-order-
like transitions [16], as shown in the inset of Fig. 2.

Figure 3 shows the activation barrier �E1 as a function
of radius �R for a typical metastable wire, corresponding to
the conductance plateau at G � 17G0 in Au. Very good
agreement is found between the numerical result for the
full potential (6) (solid curve) and the result from Eq. (13)
09060
using the best-fit cubic polynomial U��� (dashed curve).
Under strain, �R varies elastically; the corresponding stress
in the wire is shown on the upper axis. A stress of a fraction
of a nanonewton can significantly change the activation
barrier, and even change the direction of escape. The
maximum value of �E1 occurs at the cusp, where the
activation barriers for thinning and growth are equal.

The most stable structures, corresponding to the maxi-
mum values of �E1, occur at (or near) the minima of the
electron-shell potential, V�R� (Fig. 1). The lifetimes of
these equilibrated structures are limited by thinning, since
the total energy of the wire is lowered by reducing its
volume. We thus fit the effective potential at these minima
to the form U���. Table I lists critical lengths Lc, activation
barriers �E1, and lifetimes & � 1=�, Eq. (8), at various
temperatures for Na nanowires. (Only the minima that are
well fit by U��� are shown.) The temperature dependence
of & shows that the lifetime of Na nanowires drops below
the threshold for observation in break-junction experi-
ments as the temperature is increased from 75 K to
1-3



TABLE I. Calculated lifetime & (in seconds) for various long
cylindrical sodium nanowires at temperatures from 75 K to
125 K. Here G is the electrical conductance of a nondisordered
wire with ideal contacts, Lc is the critical length above which the
lifetime may be approximated by & � ��1

D exp��E1=T�, and
�E1 is the predicted activation energy for an infinitely long
wire. Note that wires shorter than Lc are predicted to have
shorter lifetimes (cf. Fig. 2).

G=G0 Lc

[Å]
�E1

[meV]
& [s]

75 K 100 K 125 K

3 2.8 250 4� 105 2 5� 10�3

6 4.3 200 7 3� 10�3 3� 10�5

17 5.0 260 7� 105 3 8� 10�3

23 6.1 230 2� 103 0.2 9� 10�4

42 7.2 250 2� 105 1 10�3

51 6.8 190 1 8� 10�4 10�4

67 18.8 180 0.6 5� 10�4 7� 10�6

96 11.4 250 105 0.8 3� 10�3

TABLE II. Fermi energy, surface tension, and typical critical
length and activation barrier for various alkali and noble metals.
The surface tension values are extrapolations to zero temperature
from Ref. [17].

Metal Li Na K Rb Cs Cu Ag Au

"F [eV] 4.74 3.24 2.12 1.85 1.59 7.00 5.49 5.53
� �N=m	 0.52 0.26 0.14 0.12 0.09 1.78 1.24 1.50
Lc= �R 0.67 0.71 0.81 0.84 0.88 0.83 0.88 0.97
�E1 [meV] 290 200 150 140 120 530 440 490
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125 K. This behavior can explain the observed temperature
dependence of conductance histograms for Na nanowires
[6], which show clear peaks at conductances near the
predicted values at temperatures below 100 K, but were
not reported at higher temperatures. The increase of Lc
with G, shown in Table I, may also explain the observed
exponential decrease in the heights of the conductance
peaks with increasing conductance [6], since the thicker
contacts are more likely to be shorter than Lc, and hence to
have exponentially reduced lifetimes.

An important prediction given in Table I is that the
lifetimes of the most stable nanowires, while they do
exhibit significant variations from one conductance plateau
to another, do not vary systematically as a function of
radius; the activation barriers in Table I vary by only about
30% from one plateau to another, and the wire with a
conductance of 96G0 has essentially the same lifetime as
that with a conductance of 3G0. In this sense, the activation
barrier is found to be universal: in any conductance inter-
val, there are very short-lived wires (not shown in Table I)
with very small activation barriers, while the longest-lived
wires have activation barriers of a universal size

�E1 ’ 0:6
�
@
2�
me

�
1=2

; (16)

depending only on the surface tension of the material. Here
me is the conduction-band effective mass, which is com-
parable to the free-electron rest mass. The fact that the
typical activation energy (16) is independent of �R is a
consequence of the virial theorem: since the instanton is
a stationary state of Eq. (4), the bending energy h�2 �@z��2i

is proportional to hU���i. Since �� � �R and V � 1= �R
[10], this implies that the characteristic size of the instan-
ton Lc �

����
�

p �R and �E1 �
����
�

p
.

Table II lists typical activation barriers and critical
lengths for various alkali and noble metals. It shows that
09060
noble-metal nanowires should have much longer lifetimes
than alkali-metal nanowires, due to their larger surface
tension coefficients. This prediction is consistent with
experimental observations [2–7], although our estimated
activation barriers for noble-metal nanowires are still too
small to account for their observed stability at room tem-
perature. This discrepancy may stem from the neglect of d
electrons in our model (except inasmuch as they enhance �
compared to the free-electron value), or due to the presence
of impurities which passivate the surface, thereby raising
the activation barrier above its intrinsic value.
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