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ABSTRACT This article presents a brief review of the nanoscale
free-electron model, which provides a continuum descrip-
tion of metal nanostructures. It is argued that surface and
quantum-size effects are the two dominant factors in the
energetics of metal nanowires, and that much of the phe-
nomenology of nanowire stability and structural dynamics
can be understood based on the interplay of these two com-
peting factors. A linear stability analysis reveals that metal
nanocylinders with certain magic conductance values G =
1, 3, 6, 12, 17, 23, 34, 42, 51, 67, 78, 96, ... times the conduc-
tance quantum are exceptionally stable. A nonlinear dynamical
simulation of nanowire structural evolution reveals a universal
equilibrium shape consisting of a magic cylinder suspended be-
tween unduloidal contacts. The lifetimes of these metastable
structures are also computed.

PACS 68.65.La; 47.20.Dr; 61.46.+w; 68.35.Ja

1 Introduction

A macroscopic analysis of the mechanical proper-
ties of thin metal wires suggests that it might be difficult to
fabricate wires thinner than a few thousand atoms in cross
section: consider a cylindrical wire of radius R and length L.
The maximum stress that the wire can sustain before the on-
set of plastic flow is σY, the yield strength. On the other hand,
the surface-induced stress in a thin wire is σs/R, where σs is
the surface tension. If σs/R > σY, one would expect the wire
to undergo plastic flow and, if L > 2πR, to break up under
surface tension, as in the Rayleigh instability of a column of
fluid [1]. This estimate gives a minimum radius for solidity,
Rmin = σs/σY. The parameters for several simple metals are
given in Table 1. Plateau realized as early as 1873 that this
surface-tension-driven instability of a cylinder is unavoidable
if cohesion is due solely to classical pairwise interactions be-
tween atoms [2].

A great deal of experimental evidence has accumulated
over the past decade, however, indicating that metal wires
considerably thinner than the above estimate can be fab-
ricated by a number of different techniques [6–20]. Even
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Metal σY σs γs σs/σY Gmin
(MPa) (N/m) (pN) (nm) (G0)

Cu 210 1.5 190 7.1 2300
Ag 140 1.0 154 7.4 1900
Au 100 1.3 257 13 5600
Li 15 0.44 99 29 26 000
Na 10 0.22 39 22 10 000

TABLE 1 The yield strength σY [3], surface tension σs [4], and curvature
energy γs [5] of various monovalent metals. For a wire of radius R < σs/σY,
the stress due to surface tension exceeds σY, signalling a breakdown of
macroscopic elasticity theory. The electrical conductance Gmin of a ballistic
wire of radius Rmin = σs/σY is shown in the rightmost column in units of the
conductance quantum G0 = 2e2/h. Note that G/G0 is approximately equal
to the number of atoms that fit within the cross section for monovalent metals

wires with lengths significantly exceeding their circumfer-
ence were found to be remarkably stable [8–10, 17–19], in-
dicating that some new mechanism must intervene to prevent
their breakup.

A clue to the resolution of this problem was provided by
the observation of electron-shell structure in conductance his-
tograms of alkali-metal point contacts [11, 14–16]. Like the
surface tension, quantum-size effects arising from the con-
finement of the conduction electrons within the cross sec-
tion of the wire become increasingly important as the wire
is scaled down to atomic dimensions. In fact, a linear sta-
bility analysis [21, 22] of ultra-thin metal wires within the
free-electron model found that the Rayleigh instability can be
completely suppressed in the vicinity of certain magic radii.

In this article, we argue that surface and quantum-size ef-
fects are the two dominant factors in the energetics of metal
nanowires, that is, metal wires with R < Rmin. We show that
much of the phenomenology of nanowire stability and struc-
tural dynamics can be understood based on the interplay of
these two competing factors.

This article is organized as follows: in Sect. 2 we de-
scribe our continuum structural model for metal nanowires.
A linear stability analysis of metal nanowires is presented in
Sect. 3. Section 4 describes the structural evolution of a metal
nanowire from a random initial configuration to a universal
equilibrium shape. The thermally activated decay of metal
nanowires is discussed in Sect. 5. Some concluding remarks
are given in Sect. 6.



1520 Applied Physics A – Materials Science & Processing

2 The nanoscale free-electron model

Guided by the importance of conduction electrons
in the cohesion of metals, and by the success of the jel-
lium model in describing metal clusters [23], the nanoscale
free-electron model (NFEM) [24] replaces the metal ions by
a uniform, positively charged background that provides a con-
finement potential for the electrons. The electron motion is
free along the wire, and confined in the transverse directions.
Due to the excellent screening [25, 26] in metal wires with
G > G0, electron–electron interactions can in most cases be
neglected. The surface properties of various metals can be fit-
ted by using appropriate surface boundary conditions [27, 28].

The NFEM is especially suitable for alkali metals, but is
also adequate to describe shell effects due to the conduction-
band s electrons in other monovalent metals, such as gold. The
experimental observation of a crossover from atomic-shell
to electron-shell effects with decreasing radius in both metal
clusters [29] and nanowires [15, 16] justifies a posteriori the
use of the NFEM in the latter regime.

A nanowire connecting two macroscopic electrodes is an
open quantum system, for which the Schrödinger equation is
most naturally formulated as a scattering problem. Transport
properties can be obtained from the scattering matrix using
Landauer-type formulas [24, 30, 31], while cohesive proper-
ties require the computation of the grand canonical potential
of the electrons. The latter can also be expressed in terms of
the scattering matrix [24], or calculated semiclassically [32]
in terms of geometrical quantities and a sum over classical
periodic orbits, as presented in Sect. 2.1.

Motivated by the argument presented in Table 1, the ionic
degrees of freedom in the wire are modeled as an incompress-
ible, irrotational fluid [22, 33]. In the Born–Oppenheimer ap-
proximation, the electronic free energy serves as the potential
energy for the ions. The ionic dynamics may then be mod-
eled via a surface self-diffusion equation [33], as presented
in Sect. 2.3.1 or, taking thermal fluctuations into account, via
a classical Ginzburg–Landau stochastic field theory [34], as
presented in Sect. 2.3.2.

2.1 Electronic energy functional

Restricting ourselves to axisymmetric structures,
the grand canonical potential for the electrons Ωe becomes
a functional of the radius R(z) of the wire. Using the Weyl
expansion [35], Ωe can be expressed in terms of geometrical
quantities such as the volume V, surface area S, and integrated
mean curvature C of the wire’s surface, plus an electron-shell
correction,

Ωe
[
R(z), T

] = −ωV +σsS −γsC +
L∫

0

dz Vshell , (1)

where −ω is the bulk value per unit volume, σs is the surface
tension, γs is a curvature-energy density, and Vshell

(
R(z), T

)

is a mesoscopic electron-shell potential, shown in Fig. 1. The
parameters σs and γs, tabulated for various metals in Table 1,
depend on the details of the interaction-dependent surface
confinement potential [27, 28, 32], but can be taken as phe-
nomenological material-dependent parameters (along with ω)

FIGURE 1 Electron-shell potential Vshell(R, T ) at zero and two finite tem-
peratures, which correspond respectively to 1000 K and 2500 K for Na. The
electrical conductance values of the magic cylindrical wires are indicated on
the upper axis

in our model. The leading-order electron-shell correction is,
however, independent of the Coulomb interaction [25, 26, 32],
and therefore insensitive to the details of the confinement po-
tential.

The geometrical quantities S = ∫ L
0 dz ∂S and C =∫ L

0 dz ∂C are given by

∂S
[
R(z)

] = 2πR(z)
√

1 + (∂z R)2 (2)

and

∂C
[
R(z)

] = π

(
1 − R∂2

z R

1 + (∂z R)2

)
, (3)

where ∂z = ∂/∂z.
Approximating the confining potential by a hard wall at

the surface of the wire, the electron-shell potential Vshell can be
expressed in terms of a Gutzwiller-type trace formula [33]

Vshell(R, T ) = 2εF

π

∞∑

w=1

∞∑

v=2w

avw(T )
fvw cos θvw

v2 Lvw

, (4)

where the sum includes all classical periodic orbits (v,w) in
a disk billiard [35], characterized by their number of vertices v

and winding number w, Lvw = 2vR sin(πw/v) is the length of
orbit (v,w), and θvw = kF Lvw −3vπ/2. The factor fvw = 1 for
v = 2w, 2 otherwise, accounts for the invariance under time-
reversal symmetry of some orbits, and avw(T ) = τvw/ sinh τvw

(τvw = πkF LvwT/2TF) is a temperature-dependent damping
factor.

Vshell(R) exhibits deep minima as a function of R
(see Fig. 1), suggesting that some radii are strongly favored,
which is confirmed by the stability analysis of Sect. 3. Note
that room temperature is small compared to the Fermi tem-
perature TF = εF/kB (in particular, T/TF = 0.008 at T = 300 K
for Na), so that the finite-temperature electron-shell poten-
tial is essentially indistinguishable from its zero-temperature
limit at experimental temperatures.
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2.2 Ionic energetics

In the Born–Oppenheimer approximation, the
electronic energy (1) acts as a potential energy for the ionic
background. The wire can exchange atoms with the macro-
scopic contacts via surface self-diffusion, so the grand canon-
ical ensemble has to be used for the ionic background as well,
leading to an ionic grand canonical potential

Ωa = Ωe −µaNa , (5)

where Na = V/Va is the number of positive ions in the wire
(Va = 3π2/k3

F is the volume of an atom) and µa is the chemical
potential for a surface atom in the wire. Using Eqs. (1)–(3), the
ionic free energy (5) becomes

Ωa =
∫

dz

[
2πσs R(z, t)

√
1 + (∂z R)2

−πγs + Vshell(R, T )

]
− (ω+µa/Va)V , (6)

where only the leading-order term in the curvature energy
is included. The chemical potential µa is obtained by calcu-
lating the change in the energy (1) with the addition of an
atom at point z0, µa(z0) ≡ cδΩe[R(z)]/δR(z0) = Ωe

[
R(z)+

cδ(z − z0), T
]−Ωe

[
R(z), T

]
, where c = Va/2πR(z) is cho-

sen so that the volume of an atom is added:

µa(z) = −ωVa + Va

2πR

(
2σs∂C[R(z)]
√

1 + (∂z R)2
+ ∂Vshell

∂R

)

. (7)

2.3 Structural dynamics

2.3.1 Surface self-diffusion. Since a large fraction of the
atoms in a nanowire are on the surface, surface self-diffusion
is the dominant mechanism of ionic motion [33]. The dynam-
ics derive from ionic mass conservation:

π

Va

∂R2(z, t)

∂t
+ ∂

∂z

[
2πR(z, t)Jz(z, t)

] = 0 , (8)

where the z component of the surface current density is given
by Fick’s law:

Jz = −�S DS

kBT

1
√

1 + (∂z R)2

∂µa

∂z
. (9)

Here, �S and DS are the surface density of ions and the sur-
face self-diffusion coefficient, respectively. The precise value
of DS for most metals is not known, but it can be removed
from the evolution equation by rescaling time to the dimen-
sionless variable τ = (�S DSTF/T )t. For comparison with ex-
perimental time scales, one can estimate that for quasi-one-
dimensional diffusion DS ≈ νDa2 exp(−ES/kBT ), where νD

is the Debye frequency, a is the lattice spacing, and ES is an
activation energy comparable to the energy of a single bond
in the solid. Our nonlinear dynamical model, Eqs. (7)–(9),
differs from previous studies of axisymmetric surface self-
diffusion [36–38] by the inclusion of electron-shell effects

(last term of Eq. (7)), which fundamentally alters the dynam-
ics.

2.3.2 Thermal fluctuations. The diffusive dynamics of the
previous subsection describe relaxation toward structures of
lower free energy. Once an equilibrium configuration (i.e.
a local minimum of the free energy) is attained, however, fluc-
tuations about this configuration will dominate the dynamics,
limiting the dwell time of the system in this local minimum.
As shown in Sect. 4, the equilibrium configurations consist
of stable cylindrical nanowires in diffusive equilibrium with
unduloid-like contacts [33, 39]. We therefore study fluctua-
tions of the form

R(z, t) ≡ R0 +ϕ(z, t) , (10)

where R0 is the radius of a stable cylinder of length L.
The energy (6) can be expanded as a series in ϕ. For the

magic cylinders, corresponding to minima of Vshell(R0) (cf.
Fig. 1), the chemical potential for the exchange of atoms be-
tween the wire and the contacts reduces to

µa

Va
= σs

R0
−ω . (11)

Keeping only the leading-order terms in ∂zϕ, one obtains
Ωa = Ωa(R0)+H[ϕ], where Ωa(R0) is the energy of an un-
perturbed cylinder of radius R0 and

H[ϕ] =
L∫

0

dz
[κ

2
(∂zϕ)2 + V(ϕ)

]
. (12)

Here, κ = 2πσs R0 and

V(ϕ) ≡ Vshell(R0 +ϕ)− Vshell(R0)− πσs

R0
ϕ2 . (13)

The problem of stability of nanowires against thermal
fluctuations can be studied as a one-dimensional Ginzburg–
Landau scalar field theory, perturbed by weak spatiotemporal
noise, in a domain of finite extent (see Ref. [34] and ref-
erences therein): the fluctuations of the nanowire radius ϕ

are treated as a classical field on a one-dimensional spatial
domain [0, L]. Its dynamics are governed by the stochastic
Ginzburg–Landau equation

∂ϕ(z, t)

∂t
= κ

∂2ϕ

∂z2
− ∂V

∂ϕ
+ (2T )1/2ξ(z, t) , (14)

where ξ(z, t) is unit-strength spatiotemporal white noise, sat-
isfying 〈ξ(z1, t1)ξ(z2, t2)〉 = δ(z1 − z2)δ(t1 − t2). In Eq. (14),
time is measured in units of a microscopic time scale describ-
ing the short-wavelength cutoff of the surface dynamics [22],
which is given to within a factor of order unity by the inverse
Debye frequency ν−1

D . The zero-noise dynamics is ‘gradient’,
that is, at zero temperature ϕ̇ = −δH/δϕ, where H[ϕ] is given
by Eq. (12). Equation (14) represents a considerable simpli-
fication compared to the volume-conserving dynamics of Eq.
(8) (which involves derivatives up to ∂4

z R), and makes possible
an analytical treatment of thermal fluctuations.
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3 Linear stability of cylinders

The linear stability of a structure is determined by
studying the change of energy induced by a small perturba-
tion: if any one perturbation decreases the energy, the struc-
ture is unstable, while it is stable if all perturbations increase
the energy.

The most general perturbation of a cylinder of radius R0
and length L is

R(z, ϕ) = R0 +λ
∑

m

∑

q

bm(q)ei(qz+mϕ) , (15)

where bm(q) = b−m(−q)∗. For simplicity, we impose periodic
boundary conditions, so that q is an integer multiple of 2π/L.
Since the total number of atoms in the system is unchanged
by the perturbation, b0(0) is related to the other coefficients by
volume conservation:

b0(0) = − λ

R0

∑

m

∑

q>0

|bm(q)|2 +O
(
λ2) , (16)

and may be eliminated. Other constraints [28] may be utilized
to account for confinement potentials more general [27] than
the hard walls considered in the present article, but do not lead
to a qualitative change in the stability analysis.

The energy change (per unit length) under such a perturba-
tion is found to be

∆Ωe

L
= λ2

∑

m

∑

q>0

αm(q; R0, T )|bm(q)|2 +O
(
λ3) , (17)

where the mode stiffness αm(q) is given by

αm(q; R, T ) =(m2 −1)
2πσs

R
+2π(σs R−γs)q

2

+ δαm(q; R, T ) , (18)

and δαm is a mesoscopic electron-shell correction.
Neglecting for the moment the mesoscopic correction

δαm(q), we find that the perturbation can lead to an instabil-
ity only for m = 0 and qR0 <

(
1 −γs/σs R0

)−1/2 ≈ 1, which

FIGURE 2 Density of states at the Fermi energy g (top) and mode stiffness
for axisymmetric deformations α ≡ α0(q) (bottom), normalized by the vol-
ume V of the wire. The perturbation wavevector is given by qR0 = 1, so that
the surface contribution (dashed curve) to α is nearly zero

FIGURE 3 Stability diagram for cylindrical metal nanowires. Dark areas
indicate stability with respect to small perturbations, A(R0, T ) > 0. The
quantized conductance values of some of the stable wires are indicated

is the criterion for the classical Rayleigh instability [1]. Note
that σs R0 > γs for all physically meaningful radii (cf. Table 1).
Any perturbation breaking axial symmetry is classically un-
favorable, and we will therefore consider only axisymmetric
perturbations (m = 0) in the rest of this paper.

Using semiclassical perturbation theory, the electron-shell
correction to the mode stiffness for axisymmetric deforma-
tions was found to be independent of q [21, 22],

δα0(R, T ) =
(

∂2

∂R2
− 1

R

∂

∂R

)
Vshell(R, T ) . (19)

This turns out to be true only in the semiclassical approx-
imation: a fully quantum-mechanical stability analysis [40]
reveals that long wires undergo a Peierls-type instability at
q = 2k(ν)

F , where k(ν)
F is the Fermi wavevector for subband ν.

However, the semiclassical results are found to provide a good
approximation as long as the temperature is not too low, and
the wires are not too long [40]. The total mode stiffness
α0(q = 1/R0) in the semiclassical approximation is shown in
Fig. 2, together with the density of states g(εF). The perturba-
tion wavevector was chosen so that the surface contribution
to α0 (dashed curve) is nearly zero. Figure 2 shows that near
the thresholds to open new conducting channels, where the
density of states is large, the wire is very unstable (α0 < 0).
However, in between the subband thresholds, the shell correc-
tion stabilizes the wire (α0 > 0).

According to Eqs. (18) and (19), the most unstable mode is
m = 0, q = 0. The stability of the wire is thus determined by
the sign of the stability coefficient A(R0, T ) ≡ α0
(q = 0; R0, T ),

A(R, T ) = −2πσs

R
+

(
∂2

∂R2
− 1

R

∂

∂R

)
Vshell(R, T ) . (20)

For A > 0, the wire is stable with respect to all small per-
turbations, while the wire is unstable for A < 0. The stabil-
ity diagram so determined is shown in Fig. 3. Competition
between surface tension and electron-shell effects leads to
a complex landscape of stable fingers and arches extending up
to very high temperatures: cylindrical wires whose electrical
conductance is a magic number 1, 3, 6, 12, 17, 23, ... times the
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conductance quantum are predicted to be stable with respect
to small perturbations up to temperatures well above the bulk
melting temperature TM ≈ 0.01TF. This finding suggests that
metal nanowires are remarkably robust structures. Indeed, the
principal stable zones shown in Fig. 3 were found [26] to per-
sist up to bias voltages eV ≥ 0.1εF, implying that these wires
can support current densities greater than 1010 A/cm2, which
would vaporize a macroscopic wire. (See Sect. 5 for a dis-
cussion of nanowire lifetime as a function of temperature.) In
Fig. 3, the values [32] σs = εFk2

F/80π and γs = 4εFkF/45π2,
appropriate for alkali metals [22], were used. For larger values
of σs (e.g. for noble metals), the maximum temperatures (in
units of TF) of the stable fingers are reduced somewhat, but the
stability diagram is qualitatively the same.

The fact, illustrated in Fig. 3, that electron-shell ef-
fects can overcome the surface-tension-driven instability of
a cylinder is rather remarkable. The surface contribution to
Ωe is O(kF R0), while the electron-shell contribution (4) is
O(kF R0)

−1. For a typical radius kF R0 = 10, the shell correc-
tion to the energy is thus two orders of magnitude smaller than
the surface energy! Stability is not determined by the energy
directly, however, but rather by the convexity (or lack thereof)
of the energy functional, which involves the second derivative
with respect to R0 (cf. Eq. (20)). Because Vshell is a rapidly
oscillating function of R0, its second derivative actually has
the same characteristic size as the surface contribution to the
stability coefficient (first term on the right-hand side of Eq.
(20)).

Cylinders are special in this respect, because the term
O(λ) in Eq. (17) vanishes exactly by symmetry. For a more
general shape (such as a wire with an elliptical cross sec-
tion [28]) to be stable, the first variations of the surface energy
and electron-shell energy, which do not have the same char-
acteristic size, must cancel. This is only possible for small
kF R0 and/or for small deviations from cylindrical symmetry.
Thus, cylinders represent about 75% of the experimentally ob-
servable [41] (most stable) wires, while structures of lesser
symmetry represent only about 25% of the total.

Further insight into the stability criterion A(R0, T ) > 0 is
provided by the identity

∂µcyl(R0, T )

∂R0

∣∣∣∣
T

= Va

2πR0
A(R0, T ) , (21)

where µcyl(R0, T ) is given by Eq. (7) with R(z) = R0. The
wire can lower its free energy via phase separation into thicker
and thinner segments if and only if ∂µcyl/∂R0 < 0. A < 0
therefore corresponds to an inhomogeneous phase [22], while
A > 0 corresponds to a homogeneous phase. This is con-
firmed by dynamical simulation of weakly perturbed stable
and unstable cylinders, the latter evolving into an inhomoge-
neous wire [33].

4 Evolution toward equilibrium

In this section, we use the diffusion equation (8) to
study the equilibrium shapes of metal nanowires, as well as
the approach to equilibrium. Figure 4 shows three stages of the
typical evolution [33, 39] of an initially random (a) nanowire:
after a relatively short time (b), the short-wavelength surface

FIGURE 4 Equilibration of an initially random nanowire: (a) initial shape;
(b) τ = 2×104 ; (c) τ = 3×107 , equilibrium structure with G = 12G0

FIGURE 5 (a) Radius R(z) of the equilibrium shapes for 14 simulations
starting from random initial shapes; the equilibrium shapes being symmet-
ric (although the initial shapes are not), we only show R(z) for z ∈ [0, L/2].
(b) Same shapes rescaled by their maximum radius Rmax. (c) Series of De-
launay unduloids of various curvatures

roughness is smoothed out, leaving a few cylindrical seg-
ments, connected by kinks; eventually, all kinks propagate
outward and coalesce, yielding an equilibrium shape (c) con-
sisting of a cylindrical wire suspended between two thicker
contacts.

Several such simulations starting from various initial con-
figurations, with conductances ranging from 1 to 200G0, and
lengths 200 ≤ kF L ≤ 600, all evolved to equilibrium struc-
tures consisting of one of the stable cylinders found in Sect. 3,
connecting two quasi-spherical contacts (see Fig. 5a). The
shape of the contact is actually a close approximation to a De-
launay unduloid of revolution [38], which is a surface of con-
stant mean curvature, and is an unstable steady state of the
diffusion equation (8) without the shell-effect term. This is il-
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lustrated in Fig. 5, comparing the equilibrium wires, rescaled
(b) by their maximum radius Rmax to a series of unduloids (c)
of various mean curvatures. The curvature of the unduloid is
determined solely by the ratio of the radius of the cylindri-
cal part to Rmax, and not by the conductance of the wire or
its length. In our case, the deep minima of the electron-shell
potential, Fig. 1, pin the unduloid at its connection with the
cylindrical part, thus stabilizing it. In fact, if one switches off
the electron-shell potential in the simulations, the equilibrated
wires break apart, as expected from the Rayleigh instability.
The breaking is found to happen first at the junction between
the cylinder and the lead, suggesting that it is the weak point
of the equilibrium structure.

This suggests that the natural evolution of a nanowire, at
a temperature sufficient for surface atoms to diffuse, is to form
a cylinder, thus providing an explanation of the observation
of long, almost perfect cylindrical Au nanowires in transmis-
sion electron microscope (TEM) experiments [8, 12, 13, 18].
The same type of simulation can be used to understand the
thinning process observed in TEM experiments [19], where
the wire diameter is seen to decrease step by step through the
propagation of kinks along the wire.

5 Lifetimes of metastable cylinders

The equilibrium nanowire structures determined
in the preceding sections are stable with respect to small
perturbations, and represent local minima of the free-energy
functional (6). However, large perturbations induced e.g. by
thermal fluctuations can drive the nanowire out of such a min-
imum, leading to a finite lifetime of these metastable struc-
tures. In this section, we use the stochastic model [34] derived
in Sect. 2.3.2 to study this process.

The statistical properties of the stochastically evolving
field ϕ, Eq. (10), are described by equilibrium statistical me-
chanics. At nonzero temperature, thermal fluctuations can in-
duce transitions between stable states (i.e. local minima) of
the potential V(ϕ), Eq. (13)). Such transitions occur via nu-
cleation of a ‘droplet’ of one stable configuration in the back-
ground of the other, subsequently quickly spreading to fill the
entire spatial domain. When the noise is weak, i.e. at low tem-
peratures (compared to the barrier height), most fluctuations
will not succeed in nucleating a new phase; it is far more likely
for a small droplet to shrink and vanish.

A transition state must go ‘uphill’ in energy from each
stable field configuration. Because of exponential suppres-
sion of fluctuations as their energy increases, there is at low
temperature a preferred transition configuration (saddle) that
lies between adjacent minima. These are the nucleation path-
ways. By time-reversal invariance, they are time-reversed
zero-noise ‘downhill’ trajectories [42]. At low temperatures,
the expected waiting time of the order parameter ϕ in a basin
of attraction is an exponential random variable, as is typical of
slow-rate processes. The activation rate is given in the T → 0
limit by the Kramers formula

Γ ∼ Γ0 exp(−∆E/T ) . (22)

Here, the activation barrier ∆E is the energy of the transi-
tion state minus that of the stable state, and Γ0 is the rate
prefactor. The quantities ∆E and Γ0 depend on the details of

FIGURE 6 Escape barrier ∆E as a function of the wire length L. Here Lc
is the critical length at which the transition state bifurcates

the potential, on the length L, and on the choice of bound-
ary conditions at the endpoints z = 0 and z = L. Based on
the equilibrium structures found in Sect. 4, we employ Neu-
mann boundary conditions, 0 = ∂zϕ(z, t)|z=0,L . These bound-
ary conditions force nucleation to begin, preferentially, at the
endpoints, consistent with experimental observations [19].

Equation (14) with the potential (13) cannot in general be
solved analytically, but most minima of the potential V(ϕ) can
be locally approximated by a cubic potential

V (±)(ϕ) = −αϕ̃± + β

3
ϕ̃3

± , (23)

where ϕ̃± = √
α/β ∓ϕ (α, β > 0). The potential V (−) (V (+))

biases fluctuations toward smaller (larger) radii.
Figure 6 shows the escape barrier ∆E as a function of the

wire length [34]: below a critical length Lc, the transition state
is a spatially constant field configuration, and the escape bar-
rier grows linearly with the wire length L. However, at L = Lc
it bifurcates into a spatially varying instanton configuration
with characteristic size ∼ Lc, so that ∆E becomes length in-
dependent for L � Lc.

Our continuum dynamical model thus predicts that the
lifetime τ of a metastable cylindrical nanowire of length
greater than the critical length Lc saturates with an es-
cape barrier given by ∆E∞ = limL→∞ ∆E. In terms of
the physical parameters defining the cubic potential (23),
the critical length Lc = (π/

√
2)κ1/2/(αβ)1/4 and ∆E∞ =

(12
√

2/5)κ1/2α5/4/β3/4. The lifetimes τ = 1/Γ for several
cylindrical sodium nanowires, calculated using the best cubic-
polynomial fits to the potential (13), are tabulated in Table 2.
Note that for a wire with G/G0 > 1, the lifetime τ may not
be the typical time before the wire breaks, but rather a switch-
ing time between two different metastable wires with different
conductance values.

An important prediction given in Table 2 is that the life-
times of the most stable nanowires, while they do exhibit sig-
nificant variations from one conductance plateau to another,
do not vary systematically as a function of radius; the acti-
vation barriers in Table 2 vary by only about 30% from one
plateau to another, and the wire with a conductance of 96G0

has essentially the same lifetime as that with a conductance
of 3G0. In this sense, the activation barrier is found to be uni-
versal: in any conductance interval, there are very short-lived
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G Lc ∆E∞ τ (s)
(G0) (Å) (meV) 75 K 100 K 125 K

3 2.8 250 4×105 2 5×10−3

6 4.3 200 7 3×10−3 3×10−5

17 5.0 260 7×105 3 8×10−3

23 6.1 230 2×103 0.2 9×10−4

42 7.2 250 2×105 1 10−3

51 6.8 190 1 8×10−4 10−4

67 18.8 180 0.6 5×10−4 7×10−6

96 11.4 250 105 0.8 3×10−3

TABLE 2 The lifetime τ (in seconds) for various cylindrical sodium
nanowires at temperatures from 75 K to 125 K. Here G is the electrical con-
ductance of the wire, Lc is the critical length above which the lifetime may
be approximated by τ ≈ ν−1

D exp(∆E∞/T ), and ∆E∞ is the activation en-
ergy for an infinitely long wire. Note that wires shorter than Lc are predicted
to have shorter lifetimes

wires (not shown in Table 2) with very small activation bar-
riers, while the longest-lived wires have activation barriers of
a universal size

∆E∞ � 0.6

(
h2σs

me

)1/2

, (24)

depending only on the surface tension of the material. Here,
me is the conduction-band effective mass, which is compara-
ble to the free-electron rest mass. A comparison of the life-
times of sodium and gold nanowires [34] indicates that gold
nanowires are much more stable, as expected from the larger
value of the surface tension σs(Au) = 5.9σs(Na). This is con-
sistent with the observation that gold nanowires in particular,
and noble-metal nanowires in general, are much more stable
than alkali-metal nanowires.

The fact that the typical activation energy (24) is indepen-
dent of R0 may be understood as follows: the instanton is a sta-
tionary state of Eq. (12); as such, the virial theorem implies
that the bending energy 〈 1

2κ(∂zϕ)2〉 is proportional to 〈V(ϕ)〉.
Since κ ∼ σs R0 and V ∼ 1/R0, this implies that the character-
istic size of the instanton Lc ∼ √

σs R0 and ∆E∞ ∼ √
σs.

The lifetimes tabulated for sodium nanowires in Table 2
exhibit a rapid decrease in the temperature interval between
75 K and 125 K. This behavior can explain the observed tem-
perature dependence of conductance histograms for sodium
nanowires [11, 14, 16], which show clear peaks at conduc-
tances near the predicted values at temperatures below 100 K,
but which were not reported at higher temperatures.

6 Discussion

The nanoscale free-electron model (NFEM) re-
viewed in the present article correctly describes surface and
electronic quantum-size effects, which play an essential role
in the stability and structural dynamics of metal nanowires;
however, it does not address their discrete atomic structure.
This continuum approach is thus complementary to atomistic
simulations, such as tight-binding molecular dynamics [43],
which correctly describe the effects of crystalline orientation,
but include electronic quantum effects only to leading order.

It is hoped that the generic behavior of metal nanostruc-
tures elucidated by the NFEM can guide the exploration of
more elaborate, material-specific models, in the same way that

the free-electron model provides an important theoretical ref-
erence point from which to understand the complex properties
of real bulk metals.
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