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Coherent resonant tunneling through an artificial molecule
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Coherent resonant tunneling through an array of quantum dots in an inhomogeneous magnetic field is
investigated using an extended Hubbard model. Both the multiterminal conductance of an array of quantum
dots and the persistent current of a quantum-dot molecule embedded in an Aharanov-Bohm ring are calculated.
The conductance and persistent current are calculated analytically for the case of a double quantum dot and
numerically for larger arrays using a multiterminal Breit-Wigner-type formula, which allows for the explicit
inclusion of inelastic processes. Cotunneling corrections to the persistent current are also investigated, and it is
shown that thesign of the persistent current on resonance may be used to determine the spin quantum numbers
of the ground state and low-lying excited states of an artificial molecule. An inhomogeneous magnetic field is
found to strongly suppress transport due to pinning of the spin-density-wave ground state of the system, and
giant magnetoresistance is predicted to result from the ferromagnetic transition induced by a uniform external
magnetic field[S0163-182608)01435-7

I. INTRODUCTION for very large dots, was able to describe the crossover from
two isolated dots to a single, larger dot quite Wé&llAn
Interest in the problem of coherent resonant tunnelingflternative approach using an effective Hubbard-like model
through an interacting mesoscopic system has been stimt@ describe the low-lying electronic states of the double
lated by a series of elegant Aharanov-Boh#B) ring quantum dot, appropriate in the limit of a discrete energy
experiments,which measured the phase of the transmissiorfPectrum on each dot, was also able to reproduce the experi-
amplitude through a quantum dot in the Coulomb blockaddnentally observed crossover, as vv_eII as the nonlinear con-
regime. Several theoretical works have addressed the role gtictance of the systeffi.Here we will employ such an ef-
phase coherence in resonant tunneling through a single quaffctive Hubbard model to describe coherent resonant
tum dot: both the conductarfcand the persistent currérgf  tunneling through a one-dimensior{dD) array of quantum
a quantum dot embedded in an AB ring have been calcudots couplgd to _mult_|ple leads. We will briefly consider th_e
lated. Many features of the experiments of Ref. 1 have beeforresponding situation for the coherent resonant tunneling
explained by these model calculaticiishowever, the cor- through a two-dimensionaPD) quantum dot array as well.
relations observed between the phases of conductance resty® focus on the strongly correlated regime, where interdot
nances rather widely separated in energy do not appear to §é"neling is too weak to destroy the energy gap stemming
explicable within these simple models, and it is therefore offom Coulomb blockade effects, and where the energy spec-
interest to investigate coherent resonant tunneling througfum on each dot is discrete. _ .
complex mesoscopic systems with nontrivial substructure. AN important consequence of coherent interdot tunneling
In this paper, we investigate the multiterminal conduc-i" j[he s'trongly cor.related regime is the forma_mon of mtgrdot
tance of an artificial molecule of coupled quantum dots a$PN-SpIN correlatiort analogous to those in a chemical
well as the persistent current of an artificial molecule embedbond at an energy scale~t?/U, whereU is the charging
ded in an AB ring. Arrays of coupled quantum dbt€ can ~ €nergy of a quantum dot and t
be thought of as systems of artificial atoms separated by (A%2m*) [d® WH(x)V?W,(x) is the interdot hopping
tunable tunnel barriers. The competition between intradomatrix elementW, , being electronic orbitals on nearest-
charge quantization effects, or Coulomb blockatidue to ~ neighbor dots. In a system with magnetic disorder, such a
the ultrasmall capacitance of each quantum dot to its envispin configuration is pinned, and the resulting blockage of
ronment, and coherent interdot tunneling has been predictegpin backflow® leads to strong charge localization. How-
to lead to a rich spectrum of many-body effects in theseever, an applied magnetic field will break such an antiferro-
systems2~16 For example, the Coulomb blockade of the in- magnetic bond when the Zeeman splittipggB>J, leading
dividual quantum dots was predicted to be destroyed comto an enormous enhancement of the charge mobility. Such
pletely when interdot tunneling exceeds a critical vafue. spin-dependent many-body effects on the magnetotransport
This phenomenon can be considered a finite-size analog should be experimentally observable provided I'" kg T
the Mott-Hubbard metal-insulator transitibhand has been =<J, whereT'+T'() is the total broadening of the resonant
observed experimentally in double quantum ddfSA de- levels of the system due to finite lifetime effects and inelastic
tailed theoretical investigation of the double quantum dot inscattering; they can be readily distinguished from orbital ef-
the limit of a continuous energy spectrum on each dot, validects in arrays of quasi-two-dimensional quantum dots by

0163-1829/98/5@.1)/7091(12)/$15.00 PRB 58 7091 © 1998 The American Physical Society



7092 C. A. STAFFORD, R. KOTLYAR, AND S. DAS SARMA PRB 58

applying the magnetic fielth the planeof the dots. Obser- B
vation of the predicted giant magnetoresistance effect in the

low-temperature transport through coupled quantum dots MH

would, we believe, represent a clear signature of the forma-

tion of an artificial molecular bond. He 1 2 Na Hr
This paper is organized as follows: In Sec. Il, an extended [?

Hubbard model describing the low-lying electronic states of

an array of coupled quantum dots is introduced, and the mag-

netic phase diagram of the system is discussed. In Sec. lll, (@) Hi M Mg

some general expressions for the conductance and persistent
current of an interacting mesoscopic system coupled to mul-
tiple electron reservoirs are derived. In Sec. IV, the conduc-
tance through a double quantum dot in an inhomogeneous
magnetic field is calculated. The magnetoresistance of the
system is shown to be proportional tb*/t*. The persistent
current through a double quantum dot embedded in an AB
ring is also investigated. For a system with an odd number of
electrons, it is shown that resonant tunneling through mo-
lecular states with odd and ev&j leads to contributions to
the persistent current of opposite signs. In Sec. V, the con-

ductance of one-dimensional arrays of quantum dots is in- gG. 1. (a) Schematic diagram of a linear array of quantum dots,
vestigated. The inelastic scattering rate in the system ig;) A quantum-dot array embedded in an Aharanov-Bohm ring,
shown to be suppressed in large arrays due to the orthog@srmed by connecting the left and right reservoirg(@
nality catastrophe. A pronounced suppression of certain reso-
nant conductance peaks in an applied magnetic field is precorrections:*22 but enter only as parameters in our model.
dicted to result from a field-induced ferromagnetic transition.The Hamiltonian of the quantum-dot array is
A many-body enhancement of localization is predicted to
give rise to a giant magnetoresistance effect in systems with
spin-dependent disorder. Such spin-dependent magnetoresis;,,—= >, ejgdj’fodeJrE (tj,,d;fﬂadj,,nL H.c)
tance effects are found to be much weaker in the ballistic jo jo
transport regime. In Sec. VI, the conductance in the 2D 1 Q2
quantum dot ey o Imesgeed and e quliaive phies 33, (@,40,10; Q4@ 5 CY @
y. Some conclu- ] ]
sions are given in Sec. VII.

where dJTU creates an electron of spim in the jth dot, Q;
=-— eE?d}qdjo is the charge operator for dptQ =C,Vy is
a polarization charge induced by the gate, and

Il. MODEL

The system under considerati¢fig. 1) consists of a lin- o o 1y,
ear arra;/of quantum dots electrostgtically deffiééh a 2D €jo= €&+ 0By/2 eCrZ Cii Vi @
electron gas, coupled weakly to several macroscopic electron

reservoirs, with a magnetic field in the plane of the dotswhereB; is the Zeeman splitting on dpande; is the orbital
Each quantum dot is modeled by a single spin-1/2 orbitalenergy of the quantum-confined orbital under consideration
representing the electronic state nearest the Fermi energyh dotj. The last term in Eq(2) represents a shift in the
Er, and is coupled via tunneling to its neight®rand to  orbital energy due to the capacitive coupling to the reser-
one or more electron reservoirs. Transport occurs betweevoirs. This term has an important effect on the nonlinear
the left (L) and right R) reservoirs; reservoirs 1 thy are  transport but does not affect the linear response and equi-
considered to be ideal voltage prod@snd serve to intro- librium properties that are the subject of the present paper.
duce inelastic processes in the syst@nElectron-electron We therefore se€, =0 in the following.

interactions in the array are describet! by a matrix of H 4os Feduces to a Hubbard mod@ivith on-site repulsion
capacitancexC;;: We assume a capacitan€g; between U=e2/Cg in the limit C—0. In generalH 4, describes an
each quantum dot and the system of metallic gates held a&ixtended Hubbard model with screened long-range interac-
voltageV,, an interdot capacitandg, and a capacitandg,  tions. The elements of the inverse capacitance matrix de-
between a quantum dot and each of its associated electr@mease exponentially with a screening length that increases
reservoirs. The diagonal elements@f are the sum of all  with C/C,. For C<Cgq, Cjj*~(CICy)!'-iliCy, while for
capacitances associated with a quantum @§=Cynyn,  C/Cy—, C;*—~1/NyCqy, and intradot charging effects are
=Cyg+C+2C,, C;i=Cy+2C+C,; (1<i<Ngy), and the fully screened. Electronic correlation effects are thus de-
off-diagonal elements aré€C;=—C for nearest-neighbor creasing functions of/C,. By varying the interdot electro-
dotsij. These capacitance coefficients may differ from theirstatic coupling, one can thus study the transition from a
geometrical values due to quantum-mechanicaktrongly correlated artificial molecule exhibiting collective
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formulas for the conductance and persistent current arising
gb ° n=2/3 By due to resonant tunneling through an interacting system. An
= on=1 & arbitrary interacting mesoscopic conductor coupledMo
7 macroscopic electron reservoirs is described by the Hamil-
e 4k D . tonian
> A A
A m] M
2r 0 . 1 H=Hi({d}.d})+ 2 X ecke
. . . a=1 kea
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FIG. 2. Spin susceptibility,=#"1AS/AB atT=0 vs magnetic
field B for linear arrays of GaAs quantum dots Wiﬂﬂz/Cg
=1 meV,C/Cy4=0.5, andt=0.05 meV. Squares, 10 electrons on where{d;} creates a complete set of single-particle states in
10 dots B,~15 T); triangles, 8 electrons on 12 dot8,( the mesoscopic system]_, creates an electron in statef
~1T). reservoir @, and H,, is a polynomial in{d’ d,}, which
commutes with the electron numbhlr=2ndxdn. Here the
spin indexo has been absorbed into the subscripendk.

We denote the ground state ki, for eachN by |0y) and

di of part:cctlﬁllar mte;est (tjo tus her? 'fhthet maglnetlc plh?s e ground-state energy IBf,. We assumé&p, to be nonde-
lagram of the quantum-dot array. In the strongly correlate enerate, as is generically the case in a nhonzero magnetic
regime, where intradot charging is not strongly screened, th eld

N-electron ground state dfl js Will form a spin-density-

Coulomb blockad¥ for C< Cq to a ballistic nanostructure
where correlation effects are negligible fG&>Cg .

SDW) due to interdot hanifel : | If the tunneling barriers to the reservoirs are sufficiently
wave(SDW) due to interdot superexchangeln an externa large, and if the temperature and bias are small compared to

magneuc.ﬁgld_, the electron spins will tend o align with the.the energy of an excitation, then the main effect of particle
f!eld to minimize the Zeeman energy. There is thus atr"’ms"éxchange with the reservoirs will be to cause transitions
tion from a spin-density-wave ground statefat 0 to a fer- |On_1)—|0y) between the nondegenerate ground states of
_ror_n:_;mgnetlc state "’}t some critical magnet|_c f'B}d Foran e system. In the vicinity of such a resonance, the nonequi-
infinite 1D array withC=0 andt<U, one find$ librium Green’s functions describing propagation within the

system in the presence of coupling to the leads can be shown

4t? . to have the Breit-Wigner forfi
gugBc.=——(27n—sin2mwn), (3
U
(On— 1] dy | ON){ON|dF | On—1) .
where n=1—|1—N/L| is the filling fraction of electrons G (€)= g 5 u + additional poles,
(holeg for N<L (N>L) in the orbital under consideration. e-ENTEN-1TiTN/2
Recall that here we are considering only the single spin-1/2 ®)

orbital nearesEg in each quantum dot; the magnetic field

required to spin polarize an entire quantum dot is much

larger®® In a system withC>0, intradot Coulomb interac- i(On—1]dy| ONY(ON| AT |ON- 1) > TSF (€)

tions are screened, ar} is therefore expected to increase. < (€)= @

Figure 2 shows the spin susceptibiligy for C/Cy=1/2 in nm

linear arrays with eight electrons on 12 dots and 10 electrons

on 10 dots. The dependence dB. in Fig. 2 is qualitatively +additional poles, (6)

similar to that in a system with intradot interactions only, but

tge (‘)’a&les Ofc a“?dfough'{] Wi"ice tgoseB of 2 Sys_tefm,With wheref ,(€) ={ex (e~ u,)/ksT]+1} L is the Fermi function
=0. Note the rapid growth ofs asB—B.. In an infinite ; _yM a

array, y, is expected to diverge &— B, because the system for reservoira, I'y=2,-,I'y, and

undergoes a second-order quantum phase tranéftidhe

spin-polarization transitio{SPT) predicted to occur in an N . ot

array of coupled quantum dots is in contrast to that observed I'n= 277; nZ’n (ON- 1] VinGn| On){On| VicmOiml On - 1)

in a single quantum d3E where the critical point occurs for e

minimum total spin. X 5(€— Eﬁ+ El?lfl)' (7)
In the following, we shall investigate the effects of the

SDW correlations and the SPT on the low-temperature mag|:| -

netotransport through coupled quantum dots. ere,Gy,

(e—EQ+ES_ )%+ (T'\/2)?

m (€) are Fourier transforms of the Keldysh Green’s
function G,,,(t)=i(d! (0)d,(t)) and the retarded Green's
function G (t)=—i6(t)({dn(t),d](0)}), respectively.
With the aid of these Green’s functions, the conductance and

Before investigating the particular Hamiltonian of inter- persistent current resulting from resonant tunneling through
est, Eq.(1), it will first be useful to derive some general the system can be calculated.

IIl. QUANTUM TRANSPORT FORMALISM
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A. Multiterminal conductance formula 1 T T T T T T T

The expectation value of the current flowing out of the
interacting region into reservoir can be expressed using the ¢ | » i
formalism of Meir and Wingreen &%

e

I h

f de Im THT*(e)[G=(e) +2f ()G (€)1}, o6
(8)

whereT's (€) =273 . VinVimd(€— € is a matrix char-
acterizing the tunnel barrier connecting reserveirto the
system. Inserting,,, from Egs.(5) and(6) into Eq.(8), one o2 L i

finds the multiprobe current formula for resonant tunnéfing

04 T

arp — 1 L L i 1
PRy [fa(e)~Tp(e)] (9) %2 04 08 08 1 12 14 16 18

e M
R f 2 (e=ER+ER_1)?+(T/2)? | o
FIG. 3. The total wave-function overlap'{)/T'®
The low-temperature transport through such a correlateeL2?‘;120|(0N|di*0|oN,l>|2 as a function ofN for an array of ten
many-body system weakly coupled to multiple leads thusjuantum dots with pure Hubbard interactidds=10t. Thex coor-
exhibits resonances of the Breit-Wigner ty{3ewhere the  dinate of theNth peak indicates the value of the polarization charge
positions and intrinsic widths of the resonances are deteQy=CgyV, at which theNth electron is added to the system. The
mined by themany-bodystates of the system. Equatid8),  suppression of {) with increasingN is evident in the lower Hub-
which expresses the current in terms of transmission prolpard bandQ,/e<1. The symmetry abou@,/e=1 follows from
abilities, is a generalization of the multiterminal conductancethe particle-hole symmetry of E@1).
formula for a noninteracting system derived bytéker?’ to
the case of resonant tunneling through an interacting systenfto reservoiri and is replaced by another electron from the
In deriving Eq.(9), we have neglected the additional reservoir, whose phase is uncorrelated with that of the pre-
poles in G;;'(€), which is justified providedksT, Ty  Vious electrorf’ .
<AEy and Ap<AEy, where AEy=min(EL—ESEY , _For simplicity, let us assume that the tunnel barriers cou-
—E% L B —E%— i pta—ES +EY ), EL being the en- pling the system to the external reservoirs are described by

N—-1> H 2 _
ergy of the lowest-lying excited state of theelectron sys- the energy-independent parameters33 . | Vil “5(ex—E)
rvs,,, a=1,...Ng; T'éy, a=L; ['Son, a=R.

tem. Equation(9) is thus appropriate to describe resonant™
tunneling through semiconductor nanostructt#®or ultr-  Then the partial widths of thaith resonance are simplyy,
asmall metallic/superconducting systéfitS under condi-  =I'3,(Oy|d},|Oy- 1), TR=T2,(0n|dN,|On- 1), and
tions of low temperature and bias, where transport is domi-
nated by asingle ground-state to ground-state transition Ny
|On-1)+|0y). Equation(9) is not applicable to systems ry=r0> > [oyld oy 1) 11
with a (spin-) degenerate ground stdtAEy=0], where the i=1 o
low-temperature physics is that of the Kondo effect, as dis-_ + ] ) ]
cussed in Refs. 26 and 32—34. Since{d;,} creates a complete basis of single-particle states

We next specialize to the configuration shown in Fig. 1.in the array, one would havé{=T"" for a noninteracting
Transport occurs between the left)(and right R) reser-  System. However, in an interacting system the wave-function
voirs. The auxiliary reservoirs,1.. Ny are assumed to be overlap|(Oy|d],|Oy_1)| is suppressed by correlation effects,
connected to ideal voltmetet®.An ideal voltmeter should leading to an orthogonality catastrophe in the lakgimit. *°
have an infinite impedance, so we demand that the expectdhe many-body suppression of the wave-function overlaps
tion value of the current flowing into reservoirs.1. Ny be leads to a reduction of both the elastic broadenlH{
zero, which fixesyuy, ... uy, via Eq. (9). Eliminating =T+T} and of the inelastic broadenirig of the con-
fi(e), ... ,de(E) from Eq. (9), and taking the linear re- ductance resonances, so that t_he system _becomes more and
sponse limit, one finds the effective two-terminal conduc-More weakly coupled to the environmentiincreases. The
tance between the left and right contacts suppression of the wave-function overlap Wlth increaging

is shown for an array of ten quantum dots with pure Hubbard

o2 ILTR Iy [—f'(e)] de interactions in Fig. 3. The effect of such an orthogonality
G=—>, LN NRJ ON s - catastrophe in the sequential tunneling regime has previously
h* TR+TR) (e-ER+ER_ )2+ (Tw/2) been discussed by Kinaret al® and by Matveev, Glazman,

(100 and Baranget*

The total width of theNth resonance may be writtely
:rh+[‘ﬁ+rl(\ll), where F%P=E§11Fﬁ- The quantity B. Persistent current
F(,\P/h may be interpreted as the totaklastic scattering rate Let us next consider the persistent current through the

due to phase-breaking processes in the auxiliary reseRoirs.quantum-dot array when the left and right reservoirs in Fig.
Such processes arise when an electron initthelot escapes 1(a) are connected together to form a 1D ring of length
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enclosing an AB fluxb = (fc/e) ¢. Since the persistent cur-
rent is an equilibrium property, the auxiliary reservoirs must Sk (E)=— S T2 2, ViEVion (vwie) ~YGhH(E),
be in mutual equilibrium at electrochemical potential as b (13)
indicated in Fig. 1b). The persistent current in such an open
system is given by (¢)= —(e/h)oQ/d¢, where( is the
grand canonical potential. The grand canonical potential mayherev,_,, is the group velocity of statk in reservoira.
be determinr—;d from the electronic scattering matr_ix of theUsing Eq.(5), one sees tha(E) has the Breit-Wigner form
system, as d|scu35ésed by Dashen, Ma, and Berri@iml by giscussed by Bitiker2° S(E) may be divided into submatri-
Akkermanset al,™ and is cesry , describing reflection of modk’ in the reservoir
dE back into modek in the reservoir,e,, and 6, describing
Q(d)=— f Z“E) Im{IndetS(E, ¢)}, (120  transmission of modk from the reservoir into the ring to the
left and right, respectivelyy, describing transmission of a
where S(E, ¢) is the scattering matrix of the multiply con- circulating state in the ring through the quantum-dot array,
nected structure shown in Fig(k) and f(E) is the Fermi anda andg, describing reflection of the circulating states in
function with electrochemical potential. In order to obtain the ring at the left and right ends of the quantum-dot array,
S(E, ¢), it is useful first to introduce the scattering matrix respectively. In terms of the submatrices{E), the flux-
S(E) for the structure shown in Fig.(d), which is related dependent scattering matrix for the combined structure may
simply to the retarded Green’s function, be written

ad O+ Beyey — ( Y— COS (f)eiipL)(Skb‘kr + 6k8k’)
y?—aB—2ycos pe PL+e 2Pt

Sk (B, ) =Ty + : (14
wherep=+y2mFE/#% and it is assumed thaf,= €,, =E. Substituting Eq(14) into Eq. (12), and taking the derivative with

respect tap, one obtains the persistent current due to coherent resonant tunneling through the quantum-dot array. The general
expression fol (¢) is somewhat cumbersome, but for the special (Ej@@l‘ﬁzl‘f\f)/z, one finds the simple result

. sin¢ sinpL
© dE f(E) TV $sinp 5
| _eFN f (cos¢p—cospl) (15
(¢)= 72 0 o (I'&/72)sin pL | o
E-EQ+EQ 1— ——————| +(I'{(12)?
cospL—cos ¢
|
The persistent current is thus also determined by the conduevhere the matrix elements
tance matrix elementsy,. From Eq.(15) one sees that as the
energy of the resonance is tuned through the Fermi lgnel _ +
varying the gate voltag¥,), the persistent current exhibits a W= ; (On[Viad1,|On-2), (17
maximum of height~(e1“§\,e)/h)sin ¢ sinkgL, which decays
with a width I'y, when the resonance is moved abqvel N
also decays when the resonance is moved below the Fermi tR= 2> (On|Vien,dn ol On-1) (18
level, but in an oscillatory pattern determined by the level 7
spacing in the ring. may be chosen real. A straightforward calculatichen

In the limit ') —0 (closed system the integrand in Eq. yields the persistent current through the quantum-dot array
(15) consists of a series of delta functions whose weights
give the current contributed by each of the discrete states in 2(elh)tgt, Sin ¢
the ring that couple to the dot array, subject to periodic (p)=~— o =0 = 712
boundary conditions. If the ring has dimensions comparable [(er—EN+En-1)*+4[t]°]

to those of the dot. array, then the level spacing in the ringr,o productt, may be greater or less than zero depending
may exceed the width of the resonand@(/L>I'y), and o the relative signs of, ; andV, ., and on the relative
the above approach will break down. The persistent current. F Fd

will then be dominated by charge fluctuations coupling theSians of the wave-function overlaps, so the persistent current

highest occupied state in the ring, of energy, with the on resonance may be elthe.r diamagnetic or pa_ramagnenc.
lowest unoccupied many-body state in the dot afrajhe For a purely 1.D system of spinless glectrong, or with an even
coupling matrix element is number of spin-1/2 electrons, the_&gnl@tb) is determ!ned

by the total number of electrons in the system, as discussed
S in Ref. 3. This is a manifestation of the so-called Leggett
|t|*=tR+t{+2tgt, cos &, (16)  theorent® However, in general the sign 6f¢) depends on

(19
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the particular state that dominates the resonance, and may bappressed by the same many-body factor in the regime of
used to classify the quantum numbers of that state, as dishermally broadened resonangeBhe effect of spin disorder
cussed below. is to be contrasted with that of a charge detunivg (e,
—€,)/2t, investigated by Klimeclket al'® and by van der

IV. DOUBLE QUANTUM DOT Vaart et al,® for which bothG¥ and G} are given by Eq.
20) at T=0 (G5 is then reduced by a factor of 2 in the
hermally broadened regimeThe very different effects of
. ) spin and charge disorder stem from the fact that the repulsive
analyt|call_y. ForNd_:2, Hdots r_educeszto a twc2)-3|te2Hubbard inF;eractions ingEq(l) enhance spin-density fluctuationsp,’ but
model with on-site repulsionU=e %E/(CE—C) and suppress charge-density fluctuations.
nearest-neighbor repulsidn;,= ?ZC_:/(CE_Cz)’ whereCy Let us now consider the effect of an additional homoge-
=Cgy+C+2C,. Spin disorder is introduced via a Zeeman negus magnetic field applied parallel to the inhomogeneous
splitting on dot 1B,=4tA, B,=0. Experimentally, such an  fig|q, B,=4tA+B, B,=B. ForB>J, it is energetically fa-
inhomogeneous field could be produced, e.g., by the presypraple to break the antiferromagnetic bond between the dots
ence of a small ferromagnetic particle. The total width of thegng form a spin-polarized state, thus preventing collective
one-particle resonance is found to Be=I'+T'"), and the  gpin-pinning effectsG? is then given by Eq(20). The re-

prefactor in Eq.(10) is I'iI'f/(T1+TT)=(I/4)/(1+A%  gyiting magnetoresistance on resonanceTferd andAs1
=I'y. The maximum conductance at the one-particle resop thus

nance is thus

Let us first consider the case of double quantum dot, foé
which the conductance matrix elemeif3 can be obtained

AR* h . h U-Uy)3
e?/h S gMB(1+F(I>/F)~__M_
—— T=0 AB e? 45 e? 8t*
Gi={ (1+A%)(1+TV/T) (24)
el o/AtikgT, I+T0<kgT<ty1+A% In the thermally broadened resonance regime, the factor (1
(200 4 1O/T) is replaced by RgT/#T. Since the Coulomb en-

Inelastic scattering suppresses the resonant conductanceesgy U—U g, is typically large compared to the interdot tun-
T=0, but has no effect when the resonance is thermallyeling matrix element, the predicted magnetoresistance is
broadened. Fou —U,>t, the two-particle ground state of extremely large. This giant magnetoresistance effect is a di-
the double quantum dot has an antiferromagnetic spin corfect indication of the field-induced breaking of the artificial
figuration characterized by the superexchange parameter molecular bond between the défs.
The conditions necessary to observe the predicted magne-
J=2t(y— A+ y’+A?), (21)  toresistance effect may be determined by including the effect

of transport through the triplet excited state via the method
where y=t/(U—-U,,). Note that 2y<J<4ty. The two- P g b

. / . of Refs. 11 and 13. One finds the resonant conductance at
particle resonance is separated from the one-particle reSe_ o for kaT>T + ')
= 8 ,

nance byeAQ,/(Cy—C)=U,+2t(1+A?)Y2-], and the

conductance is determined by the matrix elements . @2 exp(8J) / . 2T, -
2 2y 2 2hkgT 2exfdBI)—1\ ° exp(BI)+1)’ 25
T =
<02|dn|01>_ A|[1+ (AT AT+ 1)2]2 wherel's=4+°T is the sequential tunneling rate through the

pinned antiferromagnetic ground state dnd-I"; is the se-
. 1FA/(y+ ‘/77+ A?) ] 22 quential tunneling rate through the triplet excited state. The
1| magnetoresistance is thus reduced by a factor of 2 at a tem-
[1+(A=VAT+1)7] peraturekgT,,,=J/In(I';/T'y). Increased coupling to the leads

where A2=1+A%/(y+ 72+ A?)2 and the upperlowen and/or inelastic scattering can be shown to lead to a similar
sign holds forj=1 (2). For B,=J, the antiferromagnetic admixture of transport through excited states wiienI'®)
spin configuration is pinned, leading to a strong suppressionJ. We therefore expect the predicted giant magnetoresis-
of the amplitude to inject electron 2 into dot 1, and a con-tance effect to be observable fegT, I'+I'V<J. In cur-
commitant suppression of the second conductance peak. Ifently available GaAs quantum-dot systems, charging ener-
serting Eq.(22) into Egs.(7) and (10), one finds theT=0 gies are typically of order 1 meV, and one expects tunneling

resonant conductance matrix elements~0.1 meV for moderate to strong interdot
. tunneling, so values af in the range 0.01-0.1 meV should
16(e%/h) (y/A)?/(1+TDIT), y<A<1 - be attainable.
2= 4(e/h)y2/(1+ T/, A1 (23 Let us next consider the persistent current through the

double quantum dot. From Egdl5) and(19), one sees that
A second doublet of conductance peaksNot 3, 4 is sepa- the persistent current is also suppressed atNke? reso-
rated from this doublet byAQ4=e (center to centgr and nance due to the many-body fact(®2). However, in the
one findsG3 =G%, G; =G} due to electron-hole symme- later case of a nanoscopic ring with level spacingg/L
try. The resonant conductance fd=2 is suppressed by a =T, the suppression of the persistent current is only linear
factor of y? compared to that fo=1 due to collective spin in (02|djTT|01>. An interesting question is the effect of cotun-
pinning (one readily verifies that the resonant conductance iseling through excited states of the double dot when the
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0 0.5 1 FIG. 5. Conductance vs chemical potentiaithrough a linear
Q / array of 10 GaAs quantum dots with one spin-1/2 orbital per dot.
g € e?/Cy=1 meV,C=0,t=0.1 meV, andT=35 mK. Splitting of

the two Coulomb blockade peaks into minibands is driven Ghe

FIG. 4. Persistent current through a double quantum dot embeds,ppression of the fifth peak ifb) is the result of a density-
ded in an Aharanov-Bohm ring as a function of the gate voltagegependent SPT.

Heret=1,U=10,U,=0, andvk1=VkNd=V. The current is ex-

pressed in units of, =eV/2'%, the value on resonance in the thys leads to a diamagnetic contributionl {@). This state
absence of correlations and asymmetry. Solid cue 1/32; dot- couples more strongly to the leads, but is suppressed by a
ted curve,V=1/8; dashed curvey=1/2. large energy denominator whét|<J. As |t| is increased

) ) ~_ (dotted and dashed curves in Fig, the cotunneling contri-
dot-ring couplingt| exceeds the many-body level spacing in pytion becomes increasingly important, and there is a cross-
the double dotl. In order to address this question, we havegyer from a small paramagnetic peak to a larger diamagnetic
;tudied the.closed system of a.double guantum dot embedd%ak for|t|>J. Figure 4 clearly shows that the sign of the
in an AB ring numerically using the Lanczos techniiue persistent current induced by tunneling through a 1D struc-
(see Fig. 4 The Hilbert space was truncated by discretizingyre may be used to characterize the spin quantum numbers

contributions from tunneling through tt&=0 ground state  gystem.

and theS,=1 excited state of the double dot, the total num-
ber of electrons in the system was chosen to be (guthis
case fivg. Thus, if the total number of up-spin electroNs

is even, the total number of down-spin electrdhsmust be
odd, and vice vers¥ In the weak-coupling limit|t|<J, Let us next consider tunneling through larger arrays of
where a single level of the double dot contributes to theguantum dots. FoN4>2, the N-body ground states of Eq.
resonant current, the spin of the tunneling electron is wel(1) were obtained by the Lanczos technidﬁand the con-
defined, and is ductance was calculated using Efj0). At T=0 and in the
absence of inelastic scattering, the conductance peaks all
have height?/h in the absence of disorder, since in that case
IR=T=T\/2. Inelastic scattering leads to additional
broadening of the conductance peaks, and suppression of the
Figure 4 shows the persistent currenat 77/2 as a function  resonant conductance bela?/h. Disorder also leads to a

of the gate voltag&), in the vicinity of the first Coulomb  suppression of th@=0 resonant conductance belat/h
blockade doublet centered ne@g=e/2. The doublet split- due to the breaking of left-right symmet§R=T. In the

ting is here enhanced due to the finite level spacing in theollowing, we concentrate on the thermally broadened reso-
ring. ForA>0, the ground state of the coupled dot-ring sys-nance regime, where the peak heights of the conductance
tem generally ha?N;=N;+1 (in this caseN;=3 andN;  resonances depend most strongly on the conductance matrix

=2). The first electron to enter the double dot@g is  elementsI'y and I'R. For kgT>Ty, Eq. (10) simplifies
increased from zero enters the lowest single-electron eigefg!1.13

state of the double dot, and thus has-—1. SinceN, is
odd, the resonant current diamagneticdue to the parity .
effect® The second electron to enter the double dot goes into e2z I'nl'n

V. 1D ARRAY OF QUANTUM DOTS

fa/2=(0n|S,|On) —(On-—1/S,/On-1)- (26)

the state|0,) and thus hasr=+1. SinceN; is even, the G=%< 1—~L+1—‘R[_f,(lu“_ERI+EI(31—1)]- (27)
resonant current is thusaramagnetit (see solid curve in NTON

Fig. 4). The height of the second peak is reduced compared

to that of the first, but by a smaller factor than for the con- Figure 5 shows the conductance through a linear array of
ductance[cf. Egs.(10) and (19)]. However, there is also a ten quantum dots witlC=0 as a function of the chemical
contribution to the persistent current due to cotunnelingpotentialy in the leads, whose value relative to the energy of
through the first excited state of the double dot, which isthe array is controlled by the gate voltages. The two Cou-
higher in energy byl than|0,). This state hasr=—1, and  lomb blockade peaks in Fig. 5 are split into multiplets of 10
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by interdot tunneling, as discussed in Refs. 12 and 13. We - (@) B - 0

refer to these multiplets adubbard minibandsThe energy & 10¢ ]
gap between multiplets is caused by collective Coulomb i“i 05 | |
blockade'? and is analogous to the energy gap in a Mott -

insulator®® The heights of the resonant conductance peaks in 00

Fig. 5@) can be understood as follows: Since the barriers to E 10 j\j\ (b) B = 1T /\/\
the leads are assumed to be large, the single-particle wave 0

functions of the array are like those of a particle in a one- — .0or i
dimensional box. The lowest eigenstate has a maximum in S 00 N/\A J\

the center of the array and a long wavelength, hence a small 05 1.0 15
amplitude on the end dots, leading to a suppression of the & (meV)

first conductance peak. Higher-energy single-particle states
have shorter wavelengths, and hence larger amplitudes on FiG. 6. Conductance vs chemical potentialthrough a linear
the end dots, leading to conductance peaks of increasingtray of six GaAs quantum dots with one spin-1/2 orbital per dot.
height. The suppression of the conductance peaks at the tQp/ngl meV, C/C,=0.5, t=0.05 meV, T=120 mK. Disor-
of the f|rs'.[ miniband can be undgrstood by_ an anaIOgOUﬁer Stit~1 (ti;=t;,) is present in the hopping matrix elements.
argument in terms of many-body eigenstates; the tenth elegy,s gpjitting of the Coulomb blockade peaks into multiplets is
tron that enters the array can be thought of as filling a singlgiominated byc; however, the effect o is similar to that in Fig. 1.
hole in a Mott insulator, etc.

In Fig. S(b), the spin-degeneracy of the quantum-dot or-yj, elements, the SPT has a clear signature in the magne-

bitals is lifted by the Zeeman splitting. There is a critical \yyangport even in a strongly disordered system. In Fig. 6,
field B, above which the system is spin-polarized. EQ. e peak splitting due to capacitive coupling is roughly ten
(3)]. BecauseB, is a function ofn, one can pass through this jimes that due to interdot tunneling, so that the peak posi-
SPT by varyingn at fixed B. In Fig. Sb), this transition  yiong are within~10% of those predicted by a classical
occurs between the fourth and fifth electrons added to thEharging modef! However, the dramatic dependence of
array, consistent with the prediction of E§). The effect of o4y heights on magnetic field—the fourth conductance peak

this transition on the conductance spectrum is dramatic: Thg, Fig. 6(b) is suppressed by a factor of 32 compared to its
first four electrons that enter the array have spin aligned witty _ 3" yajue due to the density-dependent SPT described

B (up), but the fifth electron enters with the opposite spin, ghoye  cannot be accounted for in a model that neglects
and goes predominantly into the lowest single-particle eigengoherent interdot tunneling. This effect should be observable
state for down-_spin electrons, Which couple_s only weakly t rovidedgugB,>max(ksT,%/7), wherer; is the inelastic

the leads, leading to a suppression of the fifth resonant Corkqytering time. We believe that this striking magnetotrans-
ductance peak by over an order of magnitude. It should bg effect is the clearest possible signature of a coherent
emphasized that the heights of the conductance peaks Chanﬁ]eolecular wave function in an array of quantum dots.
discontinuouslyas a function oB each time there is a spin Figure 7 shows the conductance spectrum for an array of

flip. six quantum dots with the same parameters as in Fig. 6, but

Splitting of the Coulomb blockade peaks due to interdot,, i, spin-dependent disorder in the hopping matrix ele-
coupling and suppression of the conductance peaks at t’-@
I

L . ents, as could be introduced by magnetic impurities. Sev-
miniband edges have recently been observed experimenta y mag P

7 . ) al conductance peaks Bt=0 (solid curvg are strongly
by Waughet al.” However, it has been pointed duat bOt.h suppressed due to a many-body enhancement of localization.
effects can also be accounted for by a métef capaci-

. ; ! . This effect arises because repulsive on-site interactions en-
tlve_ly coupled dots with c_ompletelmcoher_enumerdot n-— hance spin-density wave correlations, which are pinned by
neling. It is therefore of interest to consider the effects of

interdot capacitive coupling in the regime ofherentinter-
dot transport. A nonzero interdot capacitari€entroduces
long-range electron-electron interactions in Et). and de-
creases the intradot charging enetdyFigure 2 shows the
spin susceptibilityys for C/Cy=1/2 in linear arrays with 8
electrons on 12 dots and ten electrons on 10 dots. The
dependence dB,. in Fig. 2 is qualitatively similar to that in ;
a system with intradot interactions only, but the value8 of :
are roughly twice those of a system wi@=0. Note the 00Laiin i M ALY
rapid growth of y; as B—B.. In an infinite array,y is 0.5 1.0 1.5
expected to diverge &— B because the system undergoes i (meV)
a second-order quantum phase transittbthe SPT pre-
dicted to occur in an array of coupled quantum dots is in FIG. 7. Conductance vs chemical potentialthrough a linear
contrast to that observed in a single quantum?dethere the  array of six GaAs quantum dots with one spin-1/2 orbital per dot.
critical point occurs for minimum total spin. e?/Cy=1 meV, C/C4=0.5, t=0.05 meV, T=120 mK. Spin-
Disorder introduces a Iength scale which cuts off the Criti'dependent disordest/t ~ 1 (tiTq&til) is included in the hopping
cal behavior aB— B, . However, as shown in Fig. 6, where matrix elements. Solid curvé8=0; dotted curveB=1.3 T. At
disorder 6t~t has been included in the hopping ma- 1.3 T, the second conductance peak is enhanced by a factor of 1600.
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FIG. 8. Conductance vs chemical potential through a linear ar-
ray of five GaAs quantum dots with five spin-1/2 orbitals per dot.
e?/Cy=1 meV, A=0.2 meV, T=0.29 K, CW/C,=2""1, and
t,=0.05 meV(1.05) (n=0,...,4). The energy gap between
Hubbard minibands is not resolved far-9 meV (breakdown of o
CCB). Note the quenching of magnetoconductance effects in the FIG- 9. Schematic diagram of &3 array of quantum dots.
ballistic regime.

tally in Ref. 7. Figure &) shows the effects of a magnetic
field on the conductance spectrum: a sequence of SPT's is
evident in the different minibands, witB, an increasing
function of C/Cy, leading to quenching of magnetoconduc-
tince effects in the ballistic regime.

A finite-size scaling analysis of the compressibility indi-
cates that the MH-MIT probably occurs @/ Cg=« in an

the spin-dependent disord¥rAt B=1.3 T (dotted curve
the system is abovB, and is spin-polarized, circumventing
this effect. The second conductance peak is enhanced by
factor of 1600 at 1.3 T compared to its sizeBt=0 (not
visible on this scale This giant magnetoconductanedfect

is a many-body effect intrinsic to the regime of COhereminfinite array of quantum dots, when the interdot barriers

interdot transport. . become transparent to one transmission nf6de.
Another interesting phenomenon stemming from the com-

petition between coherent interdot tunneling and charging

effects is the Mott-Hubbard metal-insulator transitidnH-

MIT), which occurs when collective Coulomb blockatle VI. 2D ARRAY OF QUANTUM DOTS

(CCB) is destroyed due to strong interdot coupling. For _ _ _

GaAs quantum dots larger than about 100 nm in diameter, Finally, we briefly consider coherent tunneling through a
we find that this transition is caused by the divergence of th&D quantum-dot arrayFig. 9) to investigate whether the
effective interdot capacitance, similar to the breakdown ofhany-bodygiant magnetoconductanceffect discussed in
Coulomb blockade in a single quantum @dtwithin the  Sec. V arises in two dimensions as well. We use @) to
framework of the scaling theory of the MH-MI*f,one ex- ~ calculate the linear tunneling conductance through a 2D
pects a crossover from CCB to ballistic transport in a finite3X 3 quantum dot array consisting bfy=9 quantum dots.
array of quantum dots when the correlation lengtm the ~ The corner dots in the array are weakly coupled to electron
CCB phase significantly exceeds the linear dimengioof reservoirs as showr_1 in Fig. 9. The Hamiltonian of the array is
the array. Figure 8 shows the conductance spectrum for fivé1e same as that given by EQ.), where the second term is
quantum dots with five spin-1/2 orbitals per dot. The diver-now modified to incorporate the nearest-neighbor tunneling
gence of the effective interdot capacitance as the interddp the 2D array: the tunneling amplitudes connecting two
barriers become transparent is simulated by setﬂHE;ICg nearest-neighbor doisandj in the array are mul;uplled by
=2""1n=0,...,4. InFig. 8, minibands arising from each the Peierls phase factors ¢xg/)[;;A-dl;] with A as the
orbital are split symmetrically into multiplets of five peaks magnetic vector potentidl. We consider a uniform flux

by CCB, with the center to center spacing between multiplets=Ba? piercing each unit cell of the array in Fig. 9. The
equal t0e2/Cg, while the energy gap between minibands magnetic fieldB enters through the tunneling amplitudgs
corresponds to the band gapA enhanced by charging ef- and through the intradot single-particle field dependence en-
fects. The CCB energy gap is evident in the first three minitering ¢;,, in Eq. (2). The flux sensitive phase factors in Eq.
bands, but is not resolvable for the higher orbita¢, (1) lead to a flux periodic modulation of the linear conduc-
=4), although there is still a slight suppression of the contance with periodicity given by one fundamental flux unit
ductance peaks near the center of the fourth miniband. Conkxc/e. This flux dependence of the linear conductance and
parison of the compressibility of the system to a universathe associated ground-state persistent current oscillations
scaling function for the MH-MIT calculated by the method have been discussed elsewh&rélere, we follow our dis-

of Ref. 43 indicateg/L ~ 10° for C/C4=8, so that the trans- cussion in the previous section, concentrating on a fixed ap-
port in the fifth miniband is effectively ballistic. The peak plied field, and focus on the magnetic field-induced spin ef-
spacing within a miniband saturatesef{L.C, (plus quan- fect (i.e., the single-dot Zeeman physicsn the linear
tum corrections~t/L) in the ballistic phase because the ar-conductance peak heights in the3 array.

ray behaves like one large capacitor, as observed experimen- The partial widthI'y; of the Nth resonance is plotted as a
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FIG. 10. The partial widti',=T'S (0| d] |Oy_ 1) as a func-
tion of N for the 3xX 3 array of quantum dots with pure Hubbard
interactionsU = 10t. The widths are plotted normalized by the par-
tial width T'} in (a) andT'} in (b). Thex coordinate of theNth peak
is given byES—EJ_, . Each peak is labeled Hy. The peak struc-
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ture is discussed in the text.

function of N in Figs. 1@a) and 1@b) for the applied mag-
netic fieldB=0 andB=1.3 T in the array, respectively. The
corresponding linear conductance in the 3 array is shown

the overlap matrix element is approximately given Bkg
~[1-Py_1(1)]Pn(1) with Py(1)=3,(0y|d],dy,|0y)
being the probability to find the corner dot occupied. For
U/t=10, the maximum and minimur®y(1) are approxi-
mately 1 and 0, leading to a peak in the linear conductance at
quarter filling (and also at three-quarter filing due to
particle-hole symmetdyin Hubbard arrays. The addition
spectra shown in the conductance vs chemical potential plots
of Figs. 10 and 11 correspond to a sequence of ground states
that are characterized by the number of electfdnthe total

spin S, and the componen$, of the total spin along the
guantization axis. The ground-statdl,§,S,) sequence for
B=0 in the array is (1,1/2,1/2»(2,0,0)—(3,3/2,1/2)
—(4,1,1)—(5,1/2,1/2)—(6,0,0)—(7,1/2,1/2}~(8,0,0)—
(9,1/2,1/2). In theB=1.3 T array the similar sequence of
the ground states is given by (1,1/2,142§2,1,1)
—(3,3/2,3/12}~(4,2,2)—(5,5/2,5/2}-(6,2,2)—(7,1/2,1/2)
—(8,1,1)»-(9,1/2,1/2). It can be seen from the latter se-
guence that the sixth linear conductance peaB=atl.3 is
suppressedby a factor of 23 due to the spin-polarization
transition discussed in the previous section for 1D arrays. It
can also be seen that the transition from the six-electron to
seven-electron ground state is forbiddenBat1.3 T and
therefore the seventh peak is absent in Figgbjland 11b).

This is an example of the so-called “spin-blockade”
phenomenof® The eighth peak aB=0 in the array is
present in the conductance and partial width traces in Figs.
10(a) and 11a), although it is suppressed by a factor of
approximately 100. Finally, foN=1 the charge density on

in Fig. 11. The peak splittings in the linear conductance inthe corner dots is ten times smallerx:1.3 T, leading to
the 3X 3 array are not distributed uniformly, but the shape ofthe suppression of the first peak Bt=1.3 T from its
the envelope function for conductance peak heights is similaB=0 value in Fig. 10.

to that in 1D chainge.g., compare Figs. 5 and )L1This

We conclude that the spin-polarization transition dis-

envelope function is peaked at quarter filling in the Hubbardcussed in Sec. V for the case of the 1D array leads to a
model we use here. In the strongly correlated Hubbard arraysimilar suppression of the linear conductance peak heights in

0.050

(a) B=0

L

0.00 L

(b) B=1.3T

FIG. 11. Conductance vs chemical potentjal through the
3% 3 array of quantum dots. The same parameters used as in Fig.

0.4

LAJ' A

" (meV)

The peak structure is discussed in the text.

1.6

2D arrays of quantum dots.

VIl. CONCLUSION

We have shown that the formation of artificial molecular
bonds due to interdot superexchange can drastically modify
the low-temperature transport through coupled quantum dots.
The resulting interdot SDW correlations are strongly pinned
by magnetic disorder, leading to a suppression of transport.
These SDW correlations are destroyed in an applied mag-
netic field large enough to polarize all the electron spins,
leading to a marked increase of the conductance at the SPT.
For a double quantum dot, this leads to a magnetoresistance
proportional to Gugh/e?)U3%/t*, whereU is the charging
energy of a quantum dot ands the interdot hopping matrix
element. SincéJ is typically at least an order of magnitude
greater thani, we have termed this effegiant magnetore-
sistance For larger 1D arrays of quantum dots, the magne-
toresistance was found to be proportional to
(gugh/e?)UN~1/t2N at theN-electron resonance whéis
even, while saturating to a smallét;independent value for
N odd. ThisU dependence reflects the probability of an elec-
tron to tunnel all the way through the system while leaving
the pinned, Nel ordered spin configuration of the ground
state undisturbed. The giant magnetoresistance effect pro-
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posed here for coupled quantum dots is expected to be quitede a fruitful area of research in the next generation of
generic in quasi-one-dimensional systems with magnetic diszoupled semiconductor quantum dot systems.

order.

In addition to the giant magnetoresistance effect predicted

for 1D arrays of quantum dots with magnetic disorder, the

SPT was shown to lead to large magnetoresistance effects
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