
PHYSICAL REVIEW B 15 SEPTEMBER 1998-IVOLUME 58, NUMBER 11
Coherent resonant tunneling through an artificial molecule
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Coherent resonant tunneling through an array of quantum dots in an inhomogeneous magnetic field is
investigated using an extended Hubbard model. Both the multiterminal conductance of an array of quantum
dots and the persistent current of a quantum-dot molecule embedded in an Aharanov-Bohm ring are calculated.
The conductance and persistent current are calculated analytically for the case of a double quantum dot and
numerically for larger arrays using a multiterminal Breit-Wigner-type formula, which allows for the explicit
inclusion of inelastic processes. Cotunneling corrections to the persistent current are also investigated, and it is
shown that thesignof the persistent current on resonance may be used to determine the spin quantum numbers
of the ground state and low-lying excited states of an artificial molecule. An inhomogeneous magnetic field is
found to strongly suppress transport due to pinning of the spin-density-wave ground state of the system, and
giant magnetoresistance is predicted to result from the ferromagnetic transition induced by a uniform external
magnetic field.@S0163-1829~98!01435-0#
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I. INTRODUCTION

Interest in the problem of coherent resonant tunnel
through an interacting mesoscopic system has been st
lated by a series of elegant Aharanov-Bohm~AB! ring
experiments,1 which measured the phase of the transmiss
amplitude through a quantum dot in the Coulomb blocka
regime. Several theoretical works have addressed the ro
phase coherence in resonant tunneling through a single q
tum dot: both the conductance2 and the persistent current3 of
a quantum dot embedded in an AB ring have been ca
lated. Many features of the experiments of Ref. 1 have b
explained by these model calculations;2,3 however, the cor-
relations observed between the phases of conductance
nances rather widely separated in energy do not appear
explicable within these simple models, and it is therefore
interest to investigate coherent resonant tunneling thro
complex mesoscopic systems with nontrivial substructure

In this paper, we investigate the multiterminal condu
tance of an artificial molecule of coupled quantum dots
well as the persistent current of an artificial molecule emb
ded in an AB ring. Arrays of coupled quantum dots4–10 can
be thought of as systems of artificial atoms separated
tunable tunnel barriers. The competition between intra
charge quantization effects, or Coulomb blockade,11 due to
the ultrasmall capacitance of each quantum dot to its e
ronment, and coherent interdot tunneling has been predi
to lead to a rich spectrum of many-body effects in the
systems.12–16 For example, the Coulomb blockade of the i
dividual quantum dots was predicted to be destroyed c
pletely when interdot tunneling exceeds a critical value12

This phenomenon can be considered a finite-size analo
the Mott-Hubbard metal-insulator transition,12 and has been
observed experimentally in double quantum dots.7,10 A de-
tailed theoretical investigation of the double quantum do
the limit of a continuous energy spectrum on each dot, va
PRB 580163-1829/98/58~11!/7091~12!/$15.00
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for very large dots, was able to describe the crossover fr
two isolated dots to a single, larger dot quite well.14 An
alternative approach using an effective Hubbard-like mo
to describe the low-lying electronic states of the dou
quantum dot, appropriate in the limit of a discrete ener
spectrum on each dot, was also able to reproduce the ex
mentally observed crossover, as well as the nonlinear c
ductance of the system.16 Here we will employ such an ef
fective Hubbard model to describe coherent reson
tunneling through a one-dimensional~1D! array of quantum
dots coupled to multiple leads. We will briefly consider th
corresponding situation for the coherent resonant tunne
through a two-dimensional~2D! quantum dot array as well
We focus on the strongly correlated regime, where inter
tunneling is too weak to destroy the energy gap stemm
from Coulomb blockade effects, and where the energy sp
trum on each dot is discrete.

An important consequence of coherent interdot tunnel
in the strongly correlated regime is the formation of interd
spin-spin correlations17 analogous to those in a chemic
bond at an energy scaleJ;t2/U, whereU is the charging
energy of a quantum dot and t
5(\2/2m* )*d3x Cm* (x)¹2Cn(x) is the interdot hopping
matrix element,Cm,n being electronic orbitals on neares
neighbor dots. In a system with magnetic disorder, suc
spin configuration is pinned, and the resulting blockage
spin backflow18 leads to strong charge localization. How
ever, an applied magnetic field will break such an antifer
magnetic bond when the Zeeman splittinggmBB.J, leading
to an enormous enhancement of the charge mobility. S
spin-dependent many-body effects on the magnetotrans
should be experimentally observable providedG1G ( i ),kBT
&J, whereG1G ( i ) is the total broadening of the resona
levels of the system due to finite lifetime effects and inelas
scattering; they can be readily distinguished from orbital
fects in arrays of quasi-two-dimensional quantum dots
7091 © 1998 The American Physical Society
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applying the magnetic fieldin the planeof the dots. Obser-
vation of the predicted giant magnetoresistance effect in
low-temperature transport through coupled quantum d
would, we believe, represent a clear signature of the for
tion of an artificial molecular bond.

This paper is organized as follows: In Sec. II, an extend
Hubbard model describing the low-lying electronic states
an array of coupled quantum dots is introduced, and the m
netic phase diagram of the system is discussed. In Sec
some general expressions for the conductance and pers
current of an interacting mesoscopic system coupled to m
tiple electron reservoirs are derived. In Sec. IV, the cond
tance through a double quantum dot in an inhomogene
magnetic field is calculated. The magnetoresistance of
system is shown to be proportional toU3/t4. The persistent
current through a double quantum dot embedded in an
ring is also investigated. For a system with an odd numbe
electrons, it is shown that resonant tunneling through m
lecular states with odd and evenSz leads to contributions to
the persistent current of opposite signs. In Sec. V, the c
ductance of one-dimensional arrays of quantum dots is
vestigated. The inelastic scattering rate in the system
shown to be suppressed in large arrays due to the orth
nality catastrophe. A pronounced suppression of certain r
nant conductance peaks in an applied magnetic field is
dicted to result from a field-induced ferromagnetic transitio
A many-body enhancement of localization is predicted
give rise to a giant magnetoresistance effect in systems
spin-dependent disorder. Such spin-dependent magnetor
tance effects are found to be much weaker in the balli
transport regime. In Sec. VI, the conductance in the
quantum dot array is investigated, and the qualitative phy
is found to be similar to that in the 1D array. Some conc
sions are given in Sec. VII.

II. MODEL

The system under consideration~Fig. 1! consists of a lin-
ear array of quantum dots electrostatically defined5–9 in a 2D
electron gas, coupled weakly to several macroscopic elec
reservoirs, with a magnetic field in the plane of the do
Each quantum dot is modeled by a single spin-1/2 orbi
representing the electronic state nearest the Fermi en
EF , and is coupled via tunneling to its neighbor~s! and to
one or more electron reservoirs. Transport occurs betw
the left (L) and right (R) reservoirs; reservoirs 1 toNd are
considered to be ideal voltage probes,19 and serve to intro-
duce inelastic processes in the system.20 Electron-electron
interactions in the array are described11,21 by a matrix of
capacitancesCi j : We assume a capacitanceCg between
each quantum dot and the system of metallic gates hel
voltageVg , an interdot capacitanceC, and a capacitanceCr
between a quantum dot and each of its associated elec
reservoirs. The diagonal elements ofCi j are the sum of all
capacitances associated with a quantum dot,C115CNdNd

5Cg1C12Cr , Cii 5Cg12C1Cr (1, i ,Nd), and the
off-diagonal elements areCi j 52C for nearest-neighbo
dots i j . These capacitance coefficients may differ from th
geometrical values due to quantum-mechani
e
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corrections,14,22 but enter only as parameters in our mod
The Hamiltonian of the quantum-dot array is

Hdots5(
j ,s

e j sdj s
† dj s1(

j ,s
~ t j sdj 11s

† dj s1H.c.!

1
1

2(i , j ~Qi1Qg!Ci j
21~Qj1Qg!2

Qg
2

2 (
i , j

Ci j
21 , ~1!

wheredj s
† creates an electron of spins in the jth dot, Qj

[2e(sdj s
† dj s is the charge operator for dotj, Qg[CgVg is

a polarization charge induced by the gate, and

e j s5e j1sBj /22eCr(
i

Cji
21Vi , ~2!

whereBj is the Zeeman splitting on dotj ande j is the orbital
energy of the quantum-confined orbital under considera
on dot j. The last term in Eq.~2! represents a shift in the
orbital energy due to the capacitive coupling to the res
voirs. This term has an important effect on the nonline
transport,23 but does not affect the linear response and eq
librium properties that are the subject of the present pa
We therefore setCr50 in the following.

Hdots reduces to a Hubbard model12 with on-site repulsion
U5e2/Cg in the limit C→0. In general,Hdots describes an
extended Hubbard model with screened long-range inte
tions. The elements of the inverse capacitance matrix
crease exponentially with a screening length that increa
with C/Cg . For C!Cg , Ci j

21;(C/Cg) u i 2 j u/Cg , while for
C/Cg→`, Ci j

21→1/NdCg , and intradot charging effects ar
fully screened. Electronic correlation effects are thus
creasing functions ofC/Cg . By varying the interdot electro-
static coupling, one can thus study the transition from
strongly correlated artificial molecule exhibiting collectiv

FIG. 1. ~a! Schematic diagram of a linear array of quantum do
~b! A quantum-dot array embedded in an Aharanov-Bohm ri
formed by connecting the left and right reservoirs in~a!.



as
te
th

he
ns

.
1
ld
c

-
e.

on

u
th

ve
r

e
a

r-
l

ing
An

mil-

in

etic

tly
d to
cle
ns
of

qui-
he
own

’s
s

and
gh

n

PRB 58 7093COHERENT RESONANT TUNNELING THROUGH AN . . .
Coulomb blockade12 for C!Cg to a ballistic nanostructure
where correlation effects are negligible forC@Cg .

Of particular interest to us here is the magnetic ph
diagram of the quantum-dot array. In the strongly correla
regime, where intradot charging is not strongly screened,
N-electron ground state ofHdots will form a spin-density-
wave~SDW! due to interdot superexchange.17 In an external
magnetic field, the electron spins will tend to align with t
field to minimize the Zeeman energy. There is thus a tra
tion from a spin-density-wave ground state atB50 to a fer-
romagnetic state at some critical magnetic fieldBc . For an
infinite 1D array withC50 andt!U, one finds24

gmBBc.
4t2

pU
~2pn2sin2pn!, ~3!

where n512u12N/Lu is the filling fraction of electrons
~holes! for N,L (N.L) in the orbital under consideration
Recall that here we are considering only the single spin-
orbital nearestEF in each quantum dot; the magnetic fie
required to spin polarize an entire quantum dot is mu
larger.25 In a system withC.0, intradot Coulomb interac
tions are screened, andBc is therefore expected to increas
Figure 2 shows the spin susceptibilityxs for C/Cg51/2 in
linear arrays with eight electrons on 12 dots and 10 electr
on 10 dots. Then dependence ofBc in Fig. 2 is qualitatively
similar to that in a system with intradot interactions only, b
the values ofBc are roughly twice those of a system wi
C50. Note the rapid growth ofxs asB→Bc . In an infinite
array,xs is expected to diverge asB→Bc because the system
undergoes a second-order quantum phase transition.24 The
spin-polarization transition~SPT! predicted to occur in an
array of coupled quantum dots is in contrast to that obser
in a single quantum dot,25 where the critical point occurs fo
minimum total spin.

In the following, we shall investigate the effects of th
SDW correlations and the SPT on the low-temperature m
netotransport through coupled quantum dots.

III. QUANTUM TRANSPORT FORMALISM

Before investigating the particular Hamiltonian of inte
est, Eq.~1!, it will first be useful to derive some genera

FIG. 2. Spin susceptibilityxs5\21DS/DB at T50 vs magnetic
field B for linear arrays of GaAs quantum dots withe2/Cg

51 meV, C/Cg50.5, andt50.05 meV. Squares, 10 electrons o
10 dots (Bc'1.5 T); triangles, 8 electrons on 12 dots (Bc

'1 T).
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formulas for the conductance and persistent current aris
due to resonant tunneling through an interacting system.
arbitrary interacting mesoscopic conductor coupled toM
macroscopic electron reservoirs is described by the Ha
tonian

H5H int~$dn
† ,dn%!1 (

a51

M

(
kPa

ekck
†ck

1 (
a51

M

(
kPa

(
n

~Vknck
†dn1H.c.!, ~4!

where$dn
†% creates a complete set of single-particle states

the mesoscopic system,ckPa
† creates an electron in statek of

reservoir a, and H int is a polynomial in $dn
† ,dn%, which

commutes with the electron numberN5(ndn
†dn . Here the

spin indexs has been absorbed into the subscriptsn andk.
We denote the ground state ofH int for eachN by u0N& and
the ground-state energy byEN

0 . We assumeEN
0 to be nonde-

generate, as is generically the case in a nonzero magn
field.

If the tunneling barriers to the reservoirs are sufficien
large, and if the temperature and bias are small compare
the energy of an excitation, then the main effect of parti
exchange with the reservoirs will be to cause transitio
u0N21&→u0N& between the nondegenerate ground states
the system. In the vicinity of such a resonance, the none
librium Green’s functions describing propagation within t
system in the presence of coupling to the leads can be sh
to have the Breit-Wigner form23

Gnm
r ~e!5

^0N21udnu0N&^0Nudm
† u0N21&

e2EN
0 1EN21

0 1 iGN/2
1additional poles,

~5!

Gnm
, ~e!5

i ^0N21udnu0N&^0Nudm
† u0N21&(

a
GN

a f a~e!

~e2EN
0 1EN21

0 !21~GN/2!2

1additional poles, ~6!

wheref a(e)5$exp@(e2ma)/kBT#11%21 is the Fermi function
for reservoira, GN5(a51

M GN
a , and

GN
a52p (

kPa
(
n,m

^0N21uVkndnu0N&^0NuVkm* dm
† u0N21&

3d~ek2EN
0 1EN21

0 !. ~7!

Here,Gnm
,,r(e) are Fourier transforms of the Keldysh Green

function Gnm
, (t)5 i ^dm

† (0)dn(t)& and the retarded Green’
function Gnm

r (t)52 iu(t)^$dn(t),dm
† (0)%&, respectively.

With the aid of these Green’s functions, the conductance
persistent current resulting from resonant tunneling throu
the system can be calculated.
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A. Multiterminal conductance formula

The expectation value of the current flowing out of t
interacting region into reservoira can be expressed using th
formalism of Meir and Wingreen as26

I a52
e

hE de Im Tr$Ga~e!@G,~e!12 f a~e!Gr~e!#%,

~8!

whereGnm
a (e)52p(kPaVknVkm* d(e2ek) is a matrix char-

acterizing the tunnel barrier connecting reservoira to the
system. InsertingGnm

,,r from Eqs.~5! and~6! into Eq.~8!, one
finds the multiprobe current formula for resonant tunnelin23

I a5
e

h (
b51

M E de(
N

GN
aGN

b @ f a~e!2 f b~e!#

~e2EN
0 1EN21

0 !21~GN/2!2
. ~9!

The low-temperature transport through such a correla
many-body system weakly coupled to multiple leads th
exhibits resonances of the Breit-Wigner type,20 where the
positions and intrinsic widths of the resonances are de
mined by themany-bodystates of the system. Equation~9!,
which expresses the current in terms of transmission p
abilities, is a generalization of the multiterminal conductan
formula for a noninteracting system derived by Bu¨ttiker27 to
the case of resonant tunneling through an interacting sys

In deriving Eq. ~9!, we have neglected the addition
poles in Gnm

,,r(e), which is justified providedkBT, GN

!DEN and Dm,DEN , where DEN5min(EN
12EN

0 ,EN21
1

2EN21
0 ,EN11

0 2EN
02ma ,ma2EN21

0 1EN22
0 ), EN

1 being the en-
ergy of the lowest-lying excited state of theN-electron sys-
tem. Equation~9! is thus appropriate to describe resona
tunneling through semiconductor nanostructures28,29 or ultr-
asmall metallic/superconducting systems30,31 under condi-
tions of low temperature and bias, where transport is do
nated by asingle ground-state to ground-state transitio
u0N21&↔u0N&. Equation ~9! is not applicable to system
with a ~spin-! degenerate ground state@DEN50#, where the
low-temperature physics is that of the Kondo effect, as d
cussed in Refs. 26 and 32–34.

We next specialize to the configuration shown in Fig.
Transport occurs between the left (L) and right (R) reser-
voirs. The auxiliary reservoirs 1, . . . ,Nd are assumed to b
connected to ideal voltmeters.19 An ideal voltmeter should
have an infinite impedance, so we demand that the expe
tion value of the current flowing into reservoirs 1, . . . ,Nd be
zero, which fixesm1 , . . . ,mNd

via Eq. ~9!. Eliminating

f 1(e), . . . ,f Nd
(e) from Eq. ~9!, and taking the linear re

sponse limit, one finds the effective two-terminal condu
tance between the left and right contacts

G5
e2

h (
N

GN
L GN

R

GN
L 1GN

RE GN @2 f 8~e!# de

~e2EN
0 1EN21

0 !21~GN/2!2
.

~10!

The total width of theNth resonance may be writtenGN

5GN
L 1GN

R1GN
( i ) , where GN

( i )5(a51
Nd GN

a . The quantity
GN

( i )/\ may be interpreted as the totalinelastic scattering rate
due to phase-breaking processes in the auxiliary reservo20

Such processes arise when an electron in theith dot escapes
d
s

r-

b-
e

m.

t

i-

-

.

ta-

-

.

into reservoiri and is replaced by another electron from t
reservoir, whose phase is uncorrelated with that of the p
vious electron.20

For simplicity, let us assume that the tunnel barriers c
pling the system to the external reservoirs are described
the energy-independent parameters 2p(kPauVknu2d(ek2E)
5G ( i )dna , a51, . . . ,Nd ; Gdn1 , a5L; GdnNd

, a5R.

Then the partial widths of theNth resonance are simplyGN
L

5G(sz^0Nud1s
† u0N21& z2, GN

R5G(sz^0NudNds
† u0N21& z2, and

GN
~ i !5G~ i !(

i 51

Nd

(
s

z^0Nudis
† u0N21& z2. ~11!

Since$dis
† % creates a complete basis of single-particle sta

in the array, one would haveGN
( i )5G ( i ) for a noninteracting

system. However, in an interacting system the wave-func
overlapz^0Nudis

† u0N21& z is suppressed by correlation effect
leading to an orthogonality catastrophe in the large-N limit.35

The many-body suppression of the wave-function overl
leads to a reduction of both the elastic broadeningGN

(e)

5GN
L 1GN

R and of the inelastic broadeningGN
( i ) of the con-

ductance resonances, so that the system becomes mor
more weakly coupled to the environment asN increases. The
suppression of the wave-function overlap with increasingN
is shown for an array of ten quantum dots with pure Hubb
interactions in Fig. 3. The effect of such an orthogonal
catastrophe in the sequential tunneling regime has previo
been discussed by Kinaretet al.36 and by Matveev, Glazman
and Baranger.14

B. Persistent current

Let us next consider the persistent current through
quantum-dot array when the left and right reservoirs in F
1~a! are connected together to form a 1D ring of lengthL

FIG. 3. The total wave-function overlap GN
( i )/G ( i )

5( i 51
Nd (sz^0Nudis

† u0N21& z2 as a function ofN for an array of ten
quantum dots with pure Hubbard interactionsU510t. Thex coor-
dinate of theNth peak indicates the value of the polarization char
Qg5CgVg at which theNth electron is added to the system. Th
suppression ofGN

( i ) with increasingN is evident in the lower Hub-
bard bandQg /e,1. The symmetry aboutQg /e51 follows from
the particle-hole symmetry of Eq.~1!.
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enclosing an AB fluxF5(\c/e)f. Since the persistent cur
rent is an equilibrium property, the auxiliary reservoirs mu
be in mutual equilibrium at electrochemical potentialm, as
indicated in Fig. 1~b!. The persistent current in such an op
system is given byI (f)52(e/\)]V/]f, whereV is the
grand canonical potential. The grand canonical potential m
be determined from the electronic scattering matrix of
system, as discussed by Dashen, Ma, and Bernstein37 and by
Akkermanset al.,38 and is

V~f!52E dE

2p
f ~E! Im$ ln detS~E,f!%, ~12!

whereS(E,f) is the scattering matrix of the multiply con
nected structure shown in Fig. 1~b! and f (E) is the Fermi
function with electrochemical potentialm. In order to obtain
S(E,f), it is useful first to introduce the scattering matr
S(E) for the structure shown in Fig. 1~a!, which is related
simply to the retarded Green’s function,
du
e

a

er
ve

ht
s
di
b
in

re
th
t

y
e

Skk8~E!52dkk812p i(
nm

Vkm* Vk8n ~vkvk8!
21/2Gnm

r ~E!,

~13!

wherevkPa is the group velocity of statek in reservoira.
Using Eq.~5!, one sees thatS(E) has the Breit-Wigner form
discussed by Bu¨ttiker.20 S(E) may be divided into submatri
ces r kk8 , describing reflection of modek8 in the reservoir
back into modek in the reservoir,«k and dk , describing
transmission of modek from the reservoir into the ring to the
left and right, respectively,g, describing transmission of a
circulating state in the ring through the quantum-dot arr
anda andb, describing reflection of the circulating states
the ring at the left and right ends of the quantum-dot arr
respectively. In terms of the submatrices ofS(E), the flux-
dependent scattering matrix for the combined structure m
be written
e general
Skk8~E,f!5r kk81
adkdk81b«k«k82~g2cosfe2 ipL!~«kdk81dk«k8!

g22ab22gcosfe2 ipL1e22ipL
, ~14!

wherep5A2mE/\ and it is assumed thatek5ek85E. Substituting Eq.~14! into Eq. ~12!, and taking the derivative with
respect tof, one obtains the persistent current due to coherent resonant tunneling through the quantum-dot array. Th
expression forI (f) is somewhat cumbersome, but for the special caseGN

L 5GN
R5GN

(e)/2, one finds the simple result

I ~f!5
eGN

~e!

2h E
dE f~E! GN

~ i !
sin f sin pL

~cosf2cospL!2

FE2EN
0 1EN21

0 2
~GN

~e!/2!sin pL

cospL2cosfG2

1~GN
~ i !/2!2

. ~15!
ay

ing

rent
etic.
ven

sed
ett
The persistent current is thus also determined by the con
tance matrix elementsGN

a . From Eq.~15! one sees that as th
energy of the resonance is tuned through the Fermi level~by
varying the gate voltageVg), the persistent current exhibits
maximum of height;(eGN

(e)/\)sinf sinkFL, which decays
with a width GN when the resonance is moved abovem. I
also decays when the resonance is moved below the F
level, but in an oscillatory pattern determined by the le
spacing in the ring.

In the limit GN
( i )→0 ~closed system!, the integrand in Eq.

~15! consists of a series of delta functions whose weig
give the current contributed by each of the discrete state
the ring that couple to the dot array, subject to perio
boundary conditions. If the ring has dimensions compara
to those of the dot array, then the level spacing in the r
may exceed the width of the resonance (\vF /L.GN), and
the above approach will break down. The persistent cur
will then be dominated by charge fluctuations coupling
highest occupied state in the ring, of energyeF , with the
lowest unoccupied many-body state in the dot array.3 The
coupling matrix element is

utu25tR
21tL

212tRtL cosf, ~16!
c-

mi
l

s
in
c
le
g

nt
e

where the matrix elements

tL5(
s

^0NuVkF1d1s
† u0N21&, ~17!

tR5(
s

^0NuVkFNd
dNds

† u0N21& ~18!

may be chosen real. A straightforward calculation3 then
yields the persistent current through the quantum-dot arr

I ~f!52
2~e/\!tRtL sin f

@~eF2EN
0 1EN21

0 !214utu2#1/2
. ~19!

The producttRtL may be greater or less than zero depend
on the relative signs ofVkF1 andVkFNd

, and on the relative
signs of the wave-function overlaps, so the persistent cur
on resonance may be either diamagnetic or paramagn
For a purely 1D system of spinless electrons, or with an e
number of spin-1/2 electrons, the sign ofI (f) is determined
by the total number of electrons in the system, as discus
in Ref. 3. This is a manifestation of the so-called Legg
theorem.39 However, in general the sign ofI (f) depends on



y
d

fo

d

n

re
h

so

ce
al
f
o
r

es

io
n
.

-
a

e

e of

e

sive
ut

e-
ous

dots
ive

r (1
-
-
is
di-

al

gne-
fect
od
e at

he

he
tem-
s
ilar

sis-

er-
ing
t

d

the
t

ear
-

the

7096 PRB 58C. A. STAFFORD, R. KOTLYAR, AND S. DAS SARMA
the particular state that dominates the resonance, and ma
used to classify the quantum numbers of that state, as
cussed below.

IV. DOUBLE QUANTUM DOT

Let us first consider the case of double quantum dot,
which the conductance matrix elements~7! can be obtained
analytically. ForNd52, Hdots reduces to a two-site Hubbar
model with on-site repulsionU5e2CS /(CS

2 2C2) and
nearest-neighbor repulsionU125e2C/(CS

2 2C2), whereCS

5Cg1C12Cr . Spin disorder is introduced via a Zeema
splitting on dot 1,B154tD, B250. Experimentally, such an
inhomogeneous field could be produced, e.g., by the p
ence of a small ferromagnetic particle. The total width of t
one-particle resonance is found to beG15G1G ( i ), and the
prefactor in Eq.~10! is G1

LG1
R/(G1

L1G1
R)5(G/4)/(11D2)

[G0 . The maximum conductance at the one-particle re
nance is thus

G1* 5H e2/h

~11D2!~11G~ i !/G!
, T50

e2G0/4\kBT, G1G~ i !!kBT!tA11D2.
~20!

Inelastic scattering suppresses the resonant conductan
T50, but has no effect when the resonance is therm
broadened. ForU2U12@t, the two-particle ground state o
the double quantum dot has an antiferromagnetic spin c
figuration characterized by the superexchange paramete

J52t~g2D1Ag21D2!, ~21!

where g5t/(U2U12). Note that 2tg<J<4tg. The two-
particle resonance is separated from the one-particle r
nance byeDQg /(CS2C)5U1212t(11D2)1/22J, and the
conductance is determined by the matrix elements

^02udj↑
† u01&5

A2

A H 2g

@11~D7AD211!2#1/2

1
17D/~g1Ag21D2!

@11~D6AD211!2#1/2J , ~22!

where A2511D2/(g1Ag21D2)2 and the upper~lower!
sign holds for j 51 ~2!. For B1*J, the antiferromagnetic
spin configuration is pinned, leading to a strong suppress
of the amplitude to inject electron 2 into dot 1, and a co
commitant suppression of the second conductance peak
serting Eq.~22! into Eqs.~7! and ~10!, one finds theT50
resonant conductance

G2* 5H 16~e2/h!~g/D!2/~11G~ i !/G!, g!D!1

4~e2/h!g2/~11G~ i !/G!, D@1.
~23!

A second doublet of conductance peaks forN53, 4 is sepa-
rated from this doublet byDQg.e ~center to center!, and
one findsG3* 5G2* , G4* 5G1* due to electron-hole symme
try. The resonant conductance forN52 is suppressed by
factor ofg2 compared to that forN51 due to collective spin
pinning ~one readily verifies that the resonant conductanc
be
is-
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suppressed by the same many-body factor in the regim
thermally broadened resonances!. The effect of spin disorder
is to be contrasted with that of a charge detuningD5(e1
2e2)/2t, investigated by Klimecket al.13 and by van der
Vaart et al.,6 for which bothG1* and G2* are given by Eq.
~20! at T50 (G2* is then reduced by a factor of 2 in th
thermally broadened regime!. The very different effects of
spin and charge disorder stem from the fact that the repul
interactions in Eq.~1! enhance spin-density fluctuations, b
suppress charge-density fluctuations.

Let us now consider the effect of an additional homog
neous magnetic field applied parallel to the inhomogene
field, B154tD1B, B25B. For B.J, it is energetically fa-
vorable to break the antiferromagnetic bond between the
and form a spin-polarized state, thus preventing collect
spin-pinning effects.G2* is then given by Eq.~20!. The re-
sulting magnetoresistance on resonance forT50 andD@1
is thus

DR*

DB
52

h

e2

gmB

4Jg2
~11G~ i !/G!;2

h

e2

gmB~U2U12!
3

8t4
.

~24!

In the thermally broadened resonance regime, the facto
1G ( i )/G) is replaced by 2kBT/pG. Since the Coulomb en
ergy U2U12 is typically large compared to the interdot tun
neling matrix elementt, the predicted magnetoresistance
extremely large. This giant magnetoresistance effect is a
rect indication of the field-induced breaking of the artifici
molecular bond between the dots.40

The conditions necessary to observe the predicted ma
toresistance effect may be determined by including the ef
of transport through the triplet excited state via the meth
of Refs. 11 and 13. One finds the resonant conductanc
B50 for kBT@G1G ( i ),

G2* 5
e2

2\kBT

exp~bJ!

2exp~bJ!21S Gs1
2G t

exp~bJ!11D , ~25!

whereGs.4g2G is the sequential tunneling rate through t
pinned antiferromagnetic ground state andG t5G0 is the se-
quential tunneling rate through the triplet excited state. T
magnetoresistance is thus reduced by a factor of 2 at a
peraturekBT1/25J/ ln(Gt /Gs). Increased coupling to the lead
and/or inelastic scattering can be shown to lead to a sim
admixture of transport through excited states whenG1G ( i )

;J. We therefore expect the predicted giant magnetore
tance effect to be observable forkBT, G1G ( i )&J. In cur-
rently available GaAs quantum-dot systems, charging en
gies are typically of order 1 meV, and one expects tunnel
matrix elementst;0.1 meV for moderate to strong interdo
tunneling, so values ofJ in the range 0.01–0.1 meV shoul
be attainable.

Let us next consider the persistent current through
double quantum dot. From Eqs.~15! and ~19!, one sees tha
the persistent current is also suppressed at theN52 reso-
nance due to the many-body factor~22!. However, in the
later case of a nanoscopic ring with level spacing\vF /L
@G2 , the suppression of the persistent current is only lin
in ^02udj↑

† u01&. An interesting question is the effect of cotun
neling through excited states of the double dot when
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dot-ring couplingutu exceeds the many-body level spacing
the double dotJ. In order to address this question, we ha
studied the closed system of a double quantum dot embe
in an AB ring numerically using the Lanczos technique41

~see Fig. 4!. The Hilbert space was truncated by discretizi
the ring ~eight sites were used!. In order to distinguish the
contributions from tunneling through theSz50 ground state
and theSz51 excited state of the double dot, the total nu
ber of electrons in the system was chosen to be odd~in this
case five!. Thus, if the total number of up-spin electronsN↑
is even, the total number of down-spin electronsN↓ must be
odd, and vice versa.42 In the weak-coupling limitutu!J,
where a single level of the double dot contributes to
resonant current, the spin of the tunneling electron is w
defined, and is

\s/25^0NuSzu0N&2^0N21uSzu0N21&. ~26!

Figure 4 shows the persistent current atf5p/2 as a function
of the gate voltageQg in the vicinity of the first Coulomb
blockade doublet centered nearQg5e/2. The doublet split-
ting is here enhanced due to the finite level spacing in
ring. ForD.0, the ground state of the coupled dot-ring sy
tem generally hasN↓5N↑11 ~in this caseN↓53 and N↑
52). The first electron to enter the double dot asQg is
increased from zero enters the lowest single-electron eig
state of the double dot, and thus hass521. SinceN↓ is
odd, the resonant current isdiamagneticdue to the parity
effect.3 The second electron to enter the double dot goes
the stateu02& and thus hass511. SinceN↑ is even, the
resonant current is thusparamagnetic3 ~see solid curve in
Fig. 4!. The height of the second peak is reduced compa
to that of the first, but by a smaller factor than for the co
ductance@cf. Eqs. ~10! and ~19!#. However, there is also a
contribution to the persistent current due to cotunnel
through the first excited state of the double dot, which
higher in energy byJ than u02&. This state hass521, and

FIG. 4. Persistent current through a double quantum dot em
ded in an Aharanov-Bohm ring as a function of the gate volta
Here t51, U510, U1250, andVk15VkNd

5V. The current is ex-
pressed in units ofI * 5eV/21/2\, the value on resonance in th
absence of correlations and asymmetry. Solid curve,V51/32; dot-
ted curve,V51/8; dashed curve,V51/2.
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thus leads to a diamagnetic contribution toI (f). This state
couples more strongly to the leads, but is suppressed b
large energy denominator whenutu!J. As utu is increased
~dotted and dashed curves in Fig. 4!, the cotunneling contri-
bution becomes increasingly important, and there is a cro
over from a small paramagnetic peak to a larger diamagn
peak for utu.J. Figure 4 clearly shows that the sign of th
persistent current induced by tunneling through a 1D str
ture may be used to characterize the spin quantum num
of the ground state and low-lying excited states of suc
system.

V. 1D ARRAY OF QUANTUM DOTS

Let us next consider tunneling through larger arrays
quantum dots. ForNd.2, theN-body ground states of Eq
~1! were obtained by the Lanczos technique,41 and the con-
ductance was calculated using Eq.~10!. At T50 and in the
absence of inelastic scattering, the conductance peak
have heighte2/h in the absence of disorder, since in that ca
GN

R5GN
L 5GN/2. Inelastic scattering leads to addition

broadening of the conductance peaks, and suppression o
resonant conductance belowe2/h. Disorder also leads to a
suppression of theT50 resonant conductance belowe2/h
due to the breaking of left-right symmetryGN

RÞGN
L . In the

following, we concentrate on the thermally broadened re
nance regime, where the peak heights of the conducta
resonances depend most strongly on the conductance m
elementsGN

L and GN
R . For kBT@GN , Eq. ~10! simplifies

to11,13

G5
e2

h (
N

GN
L GN

R

GN
L 1GN

R
@2 f 8~m2EN

0 1EN21
0 !#. ~27!

Figure 5 shows the conductance through a linear arra
ten quantum dots withC50 as a function of the chemica
potentialm in the leads, whose value relative to the energy
the array is controlled by the gate voltages. The two C
lomb blockade peaks in Fig. 5 are split into multiplets of

d-
.

FIG. 5. Conductance vs chemical potentialm through a linear
array of 10 GaAs quantum dots with one spin-1/2 orbital per d
e2/Cg51 meV, C50, t50.1 meV, andT535 mK. Splitting of
the two Coulomb blockade peaks into minibands is driven byt. The
suppression of the fifth peak in~b! is the result of a density-
dependent SPT.
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by interdot tunneling, as discussed in Refs. 12 and 13.
refer to these multiplets asHubbard minibands. The energy
gap between multiplets is caused by collective Coulo
blockade,12 and is analogous to the energy gap in a M
insulator.43 The heights of the resonant conductance peak
Fig. 5~a! can be understood as follows: Since the barriers
the leads are assumed to be large, the single-particle w
functions of the array are like those of a particle in a on
dimensional box. The lowest eigenstate has a maximum
the center of the array and a long wavelength, hence a s
amplitude on the end dots, leading to a suppression of
first conductance peak. Higher-energy single-particle st
have shorter wavelengths, and hence larger amplitude
the end dots, leading to conductance peaks of increa
height. The suppression of the conductance peaks at the
of the first miniband can be understood by an analog
argument in terms of many-body eigenstates; the tenth e
tron that enters the array can be thought of as filling a sin
hole in a Mott insulator, etc.

In Fig. 5~b!, the spin-degeneracy of the quantum-dot
bitals is lifted by the Zeeman splitting. There is a critic
field Bc above which the system is spin-polarized@cf. Eq.
~3!#. BecauseBc is a function ofn, one can pass through th
SPT by varyingn at fixed B. In Fig. 5~b!, this transition
occurs between the fourth and fifth electrons added to
array, consistent with the prediction of Eq.~3!. The effect of
this transition on the conductance spectrum is dramatic:
first four electrons that enter the array have spin aligned w
B ~up!, but the fifth electron enters with the opposite sp
and goes predominantly into the lowest single-particle eig
state for down-spin electrons, which couples only weakly
the leads, leading to a suppression of the fifth resonant c
ductance peak by over an order of magnitude. It should
emphasized that the heights of the conductance peaks ch
discontinuouslyas a function ofB each time there is a spi
flip.

Splitting of the Coulomb blockade peaks due to interd
coupling and suppression of the conductance peaks a
miniband edges have recently been observed experimen
by Waughet al.7 However, it has been pointed out7 that both
effects can also be accounted for by a model21 of capaci-
tively coupled dots with completelyincoherentinterdot tun-
neling. It is therefore of interest to consider the effects
interdot capacitive coupling in the regime ofcoherentinter-
dot transport. A nonzero interdot capacitanceC introduces
long-range electron-electron interactions in Eq.~1! and de-
creases the intradot charging energyU. Figure 2 shows the
spin susceptibilityxs for C/Cg51/2 in linear arrays with 8
electrons on 12 dots and ten electrons on 10 dots. Thn
dependence ofBc in Fig. 2 is qualitatively similar to that in
a system with intradot interactions only, but the values ofBc
are roughly twice those of a system withC50. Note the
rapid growth ofxs as B→Bc . In an infinite array,xs is
expected to diverge asB→Bc because the system undergo
a second-order quantum phase transition.24 The SPT pre-
dicted to occur in an array of coupled quantum dots is
contrast to that observed in a single quantum dot,25 where the
critical point occurs for minimum total spin.

Disorder introduces a length scale which cuts off the cr
cal behavior asB→Bc . However, as shown in Fig. 6, wher
disorder dt;t has been included in the hopping m
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trix elements, the SPT has a clear signature in the mag
totransport even in a strongly disordered system. In Fig
the peak splitting due to capacitive coupling is roughly t
times that due to interdot tunneling, so that the peak po
tions are within;10% of those predicted by a classic
charging model.21 However, the dramatic dependence
peak heights on magnetic field—the fourth conductance p
in Fig. 6~b! is suppressed by a factor of 32 compared to
B50 value due to the density-dependent SPT descri
above—cannot be accounted for in a model that negle
coherent interdot tunneling. This effect should be observa
providedgmBBc.max(kBT,\/t i), wheret i is the inelastic
scattering time. We believe that this striking magnetotra
port effect is the clearest possible signature of a cohe
molecular wave function in an array of quantum dots.

Figure 7 shows the conductance spectrum for an arra
six quantum dots with the same parameters as in Fig. 6,
with spin-dependent disorder in the hopping matrix e
ments, as could be introduced by magnetic impurities. S
eral conductance peaks atB50 ~solid curve! are strongly
suppressed due to a many-body enhancement of localiza
This effect arises because repulsive on-site interactions
hance spin-density wave correlations, which are pinned

FIG. 6. Conductance vs chemical potentialm through a linear
array of six GaAs quantum dots with one spin-1/2 orbital per d

e2/Cg51 meV, C/Cg50.5, t̄ 50.05 meV, T5120 mK. Disor-

der dt/ t̄;1 (t i↑5t i↓) is present in the hopping matrix element
The splitting of the Coulomb blockade peaks into multiplets
dominated byC; however, the effect ofB is similar to that in Fig. 1.

FIG. 7. Conductance vs chemical potentialm through a linear
array of six GaAs quantum dots with one spin-1/2 orbital per d

e2/Cg51 meV, C/Cg50.5, t̄ 50.05 meV, T5120 mK. Spin-

dependent disorderdt/ t̄;1 (t i↑Þt i↓) is included in the hopping
matrix elements. Solid curve,B50; dotted curve,B51.3 T. At
1.3 T, the second conductance peak is enhanced by a factor of 1
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the spin-dependent disorder.44 At B51.3 T ~dotted curve!
the system is aboveBc and is spin-polarized, circumventin
this effect. The second conductance peak is enhanced
factor of 1600 at 1.3 T compared to its size atB50 ~not
visible on this scale!. This giant magnetoconductanceeffect
is a many-body effect intrinsic to the regime of cohere
interdot transport.

Another interesting phenomenon stemming from the co
petition between coherent interdot tunneling and charg
effects is the Mott-Hubbard metal-insulator transition~MH-
MIT !, which occurs when collective Coulomb blockade12

~CCB! is destroyed due to strong interdot coupling. F
GaAs quantum dots larger than about 100 nm in diame
we find that this transition is caused by the divergence of
effective interdot capacitance, similar to the breakdown
Coulomb blockade in a single quantum dot.45 Within the
framework of the scaling theory of the MH-MIT,43 one ex-
pects a crossover from CCB to ballistic transport in a fin
array of quantum dots when the correlation lengthj in the
CCB phase significantly exceeds the linear dimensionL of
the array. Figure 8 shows the conductance spectrum for
quantum dots with five spin-1/2 orbitals per dot. The div
gence of the effective interdot capacitance as the inte
barriers become transparent is simulated by settingC(n)/Cg
52n21, n50, . . . ,4. InFig. 8, minibands arising from eac
orbital are split symmetrically into multiplets of five peak
by CCB, with the center to center spacing between multip
equal toe2/Cg , while the energy gap between miniban
corresponds to the band gap;D enhanced by charging ef
fects. The CCB energy gap is evident in the first three m
bands, but is not resolvable for the higher orbitals (C/Cg
>4), although there is still a slight suppression of the co
ductance peaks near the center of the fourth miniband. C
parison of the compressibility of the system to a univer
scaling function for the MH-MIT calculated by the metho
of Ref. 43 indicatesj/L;103 for C/Cg58, so that the trans
port in the fifth miniband is effectively ballistic. The pea
spacing within a miniband saturates ate2/LCg ~plus quan-
tum corrections;t/L) in the ballistic phase because the a
ray behaves like one large capacitor, as observed experim

FIG. 8. Conductance vs chemical potential through a linear
ray of five GaAs quantum dots with five spin-1/2 orbitals per d
e2/Cg51 meV, D50.2 meV, T50.29 K, C(n)/Cg52n21, and
tn50.05 meV(1.05)n (n50, . . . ,4). The energy gap between
Hubbard minibands is not resolved form.9 meV ~breakdown of
CCB!. Note the quenching of magnetoconductance effects in
ballistic regime.
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tally in Ref. 7. Figure 8~b! shows the effects of a magnet
field on the conductance spectrum: a sequence of SPT
evident in the different minibands, withBc an increasing
function of C/Cg , leading to quenching of magnetocondu
tance effects in the ballistic regime.

A finite-size scaling analysis of the compressibility ind
cates that the MH-MIT probably occurs atC/Cg5` in an
infinite array of quantum dots, when the interdot barrie
become transparent to one transmission mode.46

VI. 2D ARRAY OF QUANTUM DOTS

Finally, we briefly consider coherent tunneling through
2D quantum-dot array~Fig. 9! to investigate whether the
many-bodygiant magnetoconductanceeffect discussed in
Sec. V arises in two dimensions as well. We use Eq.~27! to
calculate the linear tunneling conductance through a
333 quantum dot array consisting ofNd59 quantum dots.
The corner dots in the array are weakly coupled to elect
reservoirs as shown in Fig. 9. The Hamiltonian of the array
the same as that given by Eq.~1!, where the second term i
now modified to incorporate the nearest-neighbor tunne
in the 2D array: the tunneling amplitudes connecting t
nearest-neighbor dotsi and j in the array are multiplied by
the Peierls phase factors exp@i(e/\)*ijAW•dlWij# with AW as the
magnetic vector potential.47 We consider a uniform fluxf
5Ba2 piercing each unit cell of the array in Fig. 9. Th
magnetic fieldB enters through the tunneling amplitudest i j
and through the intradot single-particle field dependence
tering « is in Eq. ~2!. The flux sensitive phase factors in E
~1! lead to a flux periodic modulation of the linear condu
tance with periodicity given by one fundamental flux un
hc/e. This flux dependence of the linear conductance a
the associated ground-state persistent current oscillat
have been discussed elsewhere.47 Here, we follow our dis-
cussion in the previous section, concentrating on a fixed
plied field, and focus on the magnetic field-induced spin
fect ~i.e., the single-dot Zeeman physics! on the linear
conductance peak heights in the 333 array.

The partial widthGN
L of the Nth resonance is plotted as

r-
.

e FIG. 9. Schematic diagram of a 333 array of quantum dots.
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function of N in Figs. 10~a! and 10~b! for the applied mag-
netic fieldB50 andB51.3 T in the array, respectively. Th
corresponding linear conductance in the 333 array is shown
in Fig. 11. The peak splittings in the linear conductance
the 333 array are not distributed uniformly, but the shape
the envelope function for conductance peak heights is sim
to that in 1D chains~e.g., compare Figs. 5 and 11!. This
envelope function is peaked at quarter filling in the Hubb
model we use here. In the strongly correlated Hubbard ar

FIG. 10. The partial widthGN
L 5G(sz^0Nud1s

† u0N21& z2 as a func-
tion of N for the 333 array of quantum dots with pure Hubba
interactionsU510t. The widths are plotted normalized by the pa
tial width G4

L in ~a! andG5
L in ~b!. Thex coordinate of theNth peak

is given byEN
0 2EN21

0 . Each peak is labeled byN. The peak struc-
ture is discussed in the text.

FIG. 11. Conductance vs chemical potentialm through the
333 array of quantum dots. The same parameters used as in F
The peak structure is discussed in the text.
n
f
ar

d
y,

the overlap matrix element is approximately given byGN
L

;@12PN21(1)#PN(1) with PN(1)5(s^0Nud1s
† d1su0N&

being the probability to find the corner dot occupied. F
U/t510, the maximum and minimumPN(1) are approxi-
mately 1 and 0, leading to a peak in the linear conductanc
quarter filling ~and also at three-quarter filling due t
particle-hole symmetry! in Hubbard arrays. The addition
spectra shown in the conductance vs chemical potential p
of Figs. 10 and 11 correspond to a sequence of ground s
that are characterized by the number of electronsN, the total
spin S, and the componentSz of the total spin along the
quantization axis. The ground-state (N,S,Sz) sequence for
B50 in the array is (1,1/2,1/2)→(2,0,0)→(3,3/2,1/2)
→ (4,1,1)→(5,1/2,1/2)→(6,0,0)→(7,1/2,1/2)→(8,0,0)→
(9,1/2,1/2). In theB51.3 T array the similar sequence o
the ground states is given by (1,1/2,1/2)→(2,1,1)
→(3,3/2,3/2)→(4,2,2)→(5,5/2,5/2)→(6,2,2)→(7,1/2,1/2)
→(8,1,1)→(9,1/2,1/2). It can be seen from the latter s
quence that the sixth linear conductance peak atB51.3 is
suppressed~by a factor of 23! due to the spin-polarization
transition discussed in the previous section for 1D arrays
can also be seen that the transition from the six-electron
seven-electron ground state is forbidden atB51.3 T and
therefore the seventh peak is absent in Figs. 10~b! and 11~b!.
This is an example of the so-called ‘‘spin-blockade
phenomenon.48 The eighth peak atB50 in the array is
present in the conductance and partial width traces in F
10~a! and 11~a!, although it is suppressed by a factor
approximately 100. Finally, forN51 the charge density on
the corner dots is ten times smaller atB51.3 T, leading to
the suppression of the first peak atB51.3 T from its
B50 value in Fig. 10.

We conclude that the spin-polarization transition d
cussed in Sec. V for the case of the 1D array leads t
similar suppression of the linear conductance peak heigh
2D arrays of quantum dots.

VII. CONCLUSION

We have shown that the formation of artificial molecul
bonds due to interdot superexchange can drastically mo
the low-temperature transport through coupled quantum d
The resulting interdot SDW correlations are strongly pinn
by magnetic disorder, leading to a suppression of transp
These SDW correlations are destroyed in an applied m
netic field large enough to polarize all the electron spi
leading to a marked increase of the conductance at the S
For a double quantum dot, this leads to a magnetoresista
proportional to (gmBh/e2)U3/t4, where U is the charging
energy of a quantum dot andt is the interdot hopping matrix
element. SinceU is typically at least an order of magnitud
greater thant, we have termed this effectgiant magnetore-
sistance. For larger 1D arrays of quantum dots, the magn
toresistance was found to be proportional
(gmBh/e2)U2N21/t2N at theN-electron resonance whenN is
even, while saturating to a smaller,N-independent value for
N odd. ThisU dependence reflects the probability of an ele
tron to tunnel all the way through the system while leavi
the pinned, Ne´el ordered spin configuration of the groun
state undisturbed. The giant magnetoresistance effect

. 6.
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posed here for coupled quantum dots is expected to be q
generic in quasi-one-dimensional systems with magnetic
order.

In addition to the giant magnetoresistance effect predic
for 1D arrays of quantum dots with magnetic disorder,
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