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The conducting and mechanical properties of a metallic nanowire formed at the junction between two
macroscopic metallic electrodes are investigated. Both two- and three-dimensional wires with a wide-narrow-
wide geometry are modeled in the free-electron approximation with hard-wall boundary conditions. Tunneling
and quantum-size effects are treated exactly using the scattering matrix formalism. Oscillations Btdnder
in the tensile force are found when the wire is stretched to the breaking point, which are synchronized with
guantized jumps in the conductance. The force and conductance are shown to be essentially independent of the
width of the wide sectiongelectrodes The exact results are compared with an adiabatic approximation; the
latter is found to overestimate the effects of tunneling, but still gives qualitatively reasonable results for
nanowires of length.>\, even for this abrupt geometry. In addition to the force and conductance, the net
charge of the nanowire is calculated and the effects of screening are included within linear response theory.
Mesoscopic charge fluctuations of ordeare predicted that are strongly correlated with the mesoscopic force
fluctuations. The local density of states at the Fermi energy exhibits nontrivial behavior that is correlated with
fine structure in the force and conductance, showing the importance of treating the whole wire as a mesoscopic
system rather than treating only the narrow pgB0163-182€29)05811-7

I. INTRODUCTION mined to a large extent by the conduction electrons. Thus,
one may expect the mode quantization in a nanowire to have
Metallic nanowires may be formed at the junction be-a strong effect on its mechanical properties as Welh a
tween two metallic electrodes that are pressed togetheioneering experiment published in 1996, Rubio, Agrand
and/or pulled apart in a controlled fashibrf.In a wire of  Vieira measured simultaneously the force and conductance
nanoscopic cross section, the transverse motion is quantizeduring the formation and rupture of an atomic-scale Au
leading to a finite number of electronic modes below thenanowire? They observed oscillations in the tensile force of
Fermi energyEr which can be transmitted through the wire. order 1 nN under deformation, which were synchronized
A striking consequence of these discrete modes is the quamvith jumps of order 2%h in the conductance. Similar ex-
tization of the wire’s conductance at integer multiples ofperimental results were obtained independently by Stalder
Go=2€?/h, a phenomenon first observed in two- and Durig.® In a previous paper, it was shown that this
dimensional (2D) semiconductor heterostructures, and  intriguing behavior can be understood quantitatively using a
subsequently studied in detail in three-dimensidB&l) me-  simple free-electron jellium model for a metallic nanowire.
tallic nanowires:>® A subtlety inherent in conductance The theoretical approach introduced by Stafford, Baeriswyl,
guantization experiments is that even for a nearly ideahnd Buki'® uses the electronic scattering matrix to describe
nanowire, the presence of disorder in the electrodes far frorthe coupling of the nanowire of interest to the macroscopic
the region of interest leads to a suppression of the condugrobes (e.g., scanning tunneling microscopy/atomic force
tance plateaus below integer values. This suppression is namicroscopy used to manipulate it; the correct treatment of
mally taken into account by subtracting a phenomenologicathis coupling is crucial for calculating the mesoscopic cor-
series resistance®~8 which allows one to shift the experi- rections to the bulk electrical and mechanical properties. In
mentally observed plateaus back to integer values. Theoretihe previous paper, the scattering matrix was evaluated using
cal histogram®-*2exhibit a similar shift towards lower val- the adiabatic and WKB approximations, appropriate for a
ues of the conductance, though the precise form of themooth geometry in which the diameterof the nanowire
suppression is not equivalent to a simple series resistans@ries slowly along its symmetry axis i.e., (dD/dz)%<1.
due to quantum interference effe¢fs* These consider- The qualitative picture that emerged from the analysis of
ations underline the importance of treating the nanowire an®Ref. 15 is that each quantized mode contributiref/2 to
the electrodes connected to it as a single mesoscopic systethg conductance of the nanowire also contributes an amount
rather than considering the nanowire in isolation. of order E-/\g to its cohesive force, whergg is the de
The cohesive properties of good metals are also deteBroglie wavelength of electrons at the Fermi eneigy.
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T L wires with the WNW geometry, treating the boundary effects
arising from the connection of the nanowire to the electrodes
exactly via the scattering matrix approach. Our results for the
D ‘3 YLZ» force in the WNW geometry are qualitatively similar to the
results for smooth geometries presented in Ref. 15, although
the presence of sharp corners is shown to lead to a nonge-
. ) . ) neric correction to the force for small deformations from an
ag, ag, ag, ag, ideal wire, due to the abrupt change in topology. The exact
M @ results for the WNW geometry are compared with an adia-
S U S . o S X
batic approximation, which is found to overestimate the ef-
by fects of tunneling, but still gives qualitatively reasonable re-
sults for the conductance and force of nanowires of length
FIG. 1. Schematic diagram of the WNW geometry. In the upperL>\, even for this abrupt geometry. The local density of
part, the wire geometry is sketchddlandd are the diameters of the states at the Fermi energy is also calculated, and is shown to
yvi_de and narrow parts of the wire, respectively. Under glon_gationexhibit strong modulation on a length scale of oriler This
it is assumed that the area of the narrow part of the wire is CONg o ronic structure of the scattering states gives vivid picto-

servedLd=LoD=A, whereL, is the initial length. In the 3D case, support of the notiol? that conductance channels act as
the wire is assumed to have a square cross section, and the volumé

of the narrow part is held constant during elongatibd?= L ,D? metallic F"?”ds-
=V. The lower part of the figure shows the scattering scheme: N addition to the force and conductance, the net charge of

scattering matrices¥Y and S? at WN transitions andJ for the ~ the nanowire is calculated, and the effects of screening are
narrow part of the wirecharacterize the transmission and reflection addressed by a linear response approach. We predict mesos-
of current amplitudes denoted as arrows in the diagram. TheSotal copic charge fluctuations on the order of the fundamental
matrix relates the outgoing current amplituohagéi andbg to the  charge quantune, which are synchronized with the quan-
incoming current amplitudeagl andag, . tized steps in the wire’s conductance, and strongly correlated
with the mesoscopic force fluctuations. Similar charge fluc-
(For monovalent metalsEq /\¢ is of order 1 nN) Under  tuations are preQicted ip 2D a_nd 3D nanowires; they.should
elongation, the cross section of the nanowire narrows, anH!us be present in quasi-two-dimensional quantum point con-
each time a transverse mode is cut off, both the conductand@cts exhibiting conductance quantizafichas well. The
and the cohesive force decrease abruptly. Using an elegafinaliness of the predicted mesoscopic charge imbalance
argument based on the technique of Ref. 15ppler and leads us to neglect electron-electron interactions in our treat-
Zwerger showed that the leading-order mesoscopic corregnent of the conducting and mechanical properties of the
tion to the tensile force depends only on the topology of thenanowire. Indeed, we find that the mesoscopic corrections to
cross section of the nanowité The scattering matrix for- the force for wires of length ~\ ¢ are large compared to the
malism has also been used to study the effects of impuritgorrections expected due to screening effects, justifying our

.

scattering on the mechanical properties of nanowfifes. approach.
Independently, van Ruitenbeek, Devoret, Esteve, and The paper is organized as follows: In Sec. Il, we review
Urbina'® considered wires with a special (ilfe)—N(arrow)—  the scattering matrix formulation of electrical conduction and

W(ide) geometry, with two wide outer sections, representingstatistical mechanics. General expressions for the force,
the electrodes, and a narrow inner section of constant dianeharge, and conductance of a mesoscopic conductor in terms
eter, representing the nanowiigee Fig. 1 They considered of the electronic scattering matrix are derived. In Sec. I, the
the limit (cf. also Refs. 19 and 2@vhere the narrow section scattering matrix for 2D and 3D wires with the WNW geom-
is sufficiently long that the boundary effects at the junctionsetry is calculated. For simplicity, 3D wires with a square
of the wide and narrow sections give a negligible contribu-cross section are considered, but it is straightforward to use
tion to the energetics of the nanowire. They also pointed oubur method for wires of arbitrary cross section if the eigen-
that screening should be included, and imposed a chardenctions and eigenvalues of the 2D Sdfirmer equation
neutrality constraint as a first approximation, determining thewith Dirichlet boundary conditions for this shape are known.
electrostatic potential self-consistently to enforce globaln Sec. IV, the results for the force, charge, and conductance
charge neutrality. However, they neglected the interaction obf a 2D nanowire are presented. The semiclassical approxi-
the positive jellium background with the self-consistent po-mation to the force and charge, and the topological contribu-
tential, leading to a drastic overestimation of the effect oftion due to sharp corners are discussed. The exact results are
screening on the force oscillations. A local charge neutraliticompared to an adiabatic approximation, and the local den-
approximation was also employed by Cuevas and co-workersity of states at the Fermi energy is calculated. In Sec. V, the
in their treatment of the conductance channels of atomicresults for the force, charge, and conductance of 3D nanow-
scale contact&"??It was noted by Van Ruitenbeek al.that  ires are presented. The effects of screening are evaluated
the assumption of local charge neutrality of a nanowirewithin linear response. The relevance of our results to the
breaks down for very short wires, such as those investigateexperiments of Refs. 4 and 5 is discussed. Some general
in the experiments of Refs. 2—6, which are only on the ordeconclusions are presented in Sec. VI, and a comparison of
of 1 nm in length. For such short wires, boundary effects arehe jellium model used here to atomistic descriptions of
important. nanowires based on classical molecular dynamics
In the present article, we investigate both 2D and 3Dsimulationg®~?°is given.
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Il. S MATRIX FORMALISM where the submatriceS;;(E) contain transmissioni ¢ j)
and reflection (=j) amplitudes. Each submatr; (E) is a
matrix in the incoming and outgoing scattering channels
andv’.

A nanowire connecting two macroscopic electrodes-
picted schematically in Fig.)lis an open quantum mechani-
cal system. The Schdinger equation for such an open sys- . L .
tem is most naturally formulated as a scattering problemt The eI?(_:trlgaltﬁondulclz_tEnce |sfg|ver%8|’£17terms of the scat-
The fundamental quantity describing the properties of thec"Ng Matrix by the well-known formu
system is the scattering matr&(E) connecting incoming 22 — 9 (E)
and outgoing asymptotic states of conduction electrons in the G= w dE E
electrodes.(The degrees of freedom corresponding to the
metallic ions and core electrons will not be treated explicitly,where the factor of 2 accounts for spin degeneracy. Equation
but will be assumed to give rise to a confinement potential4) indicates thaG is proportional to the sum over the trans-
for the conduction electrons, i.e., to specify the geometry ofission probabilities of electrons incident in a window of
the system. This should be a reasonable starting point t@idth kgT about the Fermi energy. Equation(4) may be
describe simple monovalent metalSthe formulation of  modified by electron-electron interactions at finite tempera-
electrical transport in terms of the scattering matrix was detures, but has been sho¥rto hold quite generally in the
veloped by Landauét and Bittiker,2” while the formulation  |imit T— 0.
of the statistical mechanics of open quantum systems in The quantity needed to investigate the statistical mechan-
terms of the scattering matrix was first given by Dashen, Maics of the nanowire is the electronic density of StabgE).
and Bernsteir® and was recently revived in the context of The density of states can be expressed in terms of the scat-
the persistent current problem by Akkermatsal® A uni-  tering matrix a&3?
fied treatment of the electrical and mechanical properties of
metallic nanostructures in terms of the electronic scattering
matrix was given by Stafford, Baeriswyl, and ®u*® In the
remainder of this section, we recapitulate the general formal- ] ) ] ]
ism of Ref. 15, which will serve as the starting point for the This expges§|on holds for an arbitrary interacting gas of
present investigation. partlglesz. Given the density of states, the grand pqrtltlon

The essential ingredient in the scattering matrix descripfunction may be evaluated, and the thermal expectation val-
tion of mesoscopic systems is that electrons are injected intgeS Of all observables may be calculated. N
the system frommacroscopicreservoirs in internal thermal  The net positive charg®™ associated with the positive
equilibrium; any perturbation of the reservoirs due to theions and their core electrons is assumed to be distributed
mesoscopic current flowing from one to another is assumebniformly in the wire(jellium mode). The chargeQ™ asso-
to be negligible. The energy distribution of the electrons in-Ciated with the conduction electrons must, however, be de-
jected from reservoir is thus given by the Fermi distribu- términed from a solution of the scattering problem. The ex-
tion function f ,(E)={exd B(E—u,)]+1} %, whereu, and  Pectation value o™ is given by
B=1/kgT are the electrochemical potential and inverse tem-
perature, respectively, of reservait (Q7)= _ef dE f(E)D(E). (6)

The asymptotic scattering states of conduction electrons
for the geometry depicted in Fig. 1 are described by a transmtegrating by parts, and taking the limit—0, one obtains
verse quantum number and a wave numbek that is @  the simplified expression
function of energyE and v:

e
(Q7)Y=——=Im{IndetS(Ef)}. )
K(E)= \| R (E—e,) ® i
Y K2 v The overall phase of the scattering matrix depends on the

precise choice of the asymptotic statédseir phasg There-
wheree, is the energy of the transverse modes. If the amfore the phase relation chosen between the amplitades
plitudes of incoming currents at ener@y are given by a andbj, is, in principle, free. Different choices correspond to
vector with componenta,, (currents from the left sideand  the inclusion of various amounts of the constant asymptotic
a, (currents from the right sidethe outgoing current am- charge density irQ~. However, the total charg®@=(Q~)

TH{SI(E)SiAE)}, 4)

1 IS(E)
_ U -7
D(E)= 5Tt S'(E)—=—H.c/. (5)

plitudesb:, andb , are given by +Q™ is independent of this choice of phase, provided we
add the appropriate quantity of the constant positive back-
bt at ground charge density.
( _) =S(E) _)_ 2 The grand canonical potential is the relevant thermody-
b a namic potential to describe the mechanical properties of the

_ _ . electron gas in the nanowire, and may be written
The scattering matrix for a two-terminal conductor may be

decomposed into four submatrices 1 s
Q=—E dE D(E)In(1+e AE-#)), (8)
S(E)= ( Sn 812), 3 It should be noted that E¢8) only holds for noninteracting
Su S electrons, since the thermal trace is taken assuming that each
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fermionic mode is independent. A more general expressioiVe thus have relations which give us the conductance,
for Q, valid within a self-consistent mean-field treatment of charge, and force as a function of tBenatrix.

interactions, will be presented elsewh&tddere it is suffi-

cient to note that it will be argued below that the corrections . SMATRIX OF THE WNW GEOMETRY

to Eqg.(8) due to charging effects are negligible.

Equations(6) and (8) are deceptively simple, and it is In order to obtain exact results for the tunneling and
worth emphasizing that is the asymptoticelectrochemical ~finite-size corrections to the conducting and thermodynamic
potential of electrons injected from the reservoitsta local ~ Properties of metallic nanowires, we consider the special
Fermi energy, as introduced by certain other autf®t®. WNW geometry illustrated in Fig. 1, for which tf@matrix
D(E) is the g|oba| energy density of eigenstates of the Scatcarll be calculated eXaCtly-. The SyStem consists of a noninte-r'
tering problem, and contains all effects of multiple scatter-acting electron gas confined by hard-wall boundary condi-
ing, quantum interference, etc. These eigenstates are poplins (we will return to the question of electron-electron in-
lated according to the Fermi distributions of the reservoirsteractions in Sec. V B The wire cross section in the 3D case
The occupation of a local basis of states, which are notS assumed to be square. A generalization to an arbitrary
eigenstates dﬂ, isin genera' quite Compncated, and will be Cross section is Stl’aight_forward if the eigenfunctions and ei-
discussed in detail in Sec. IVE. genvalues of the 2D Schilinger equation are known for that

The cohesive force of the nanowire is given by the derivashape. The scattering problem for the 2D WNW geometry

tive of the grand canonical potential with respect to the elonWas solved by Szafer and Stdfién connection with the
gation: problem of conductance quantization in 2D semiconductor

quantum point contacts, and was further investigated by
90 Weisshaaet al3® In addition to the transmission coefficients
F=—— (99  calculated in Refs. 34 and 35, we need the reflection coeffi-
dL cients, i.e., the fullS matrix. The generalization of the
method of Refs. 34 and 35 to 3D nanowires and to calculate
The elongatiori is a parameter controlled by an externally the full S matrix is described below.
applied force that balancés In principle, the shapB(z) of In order to calculate the elements of tBamatrix, solu-
the nanowire as a function of elongation should be detertions of the Schrdinger equation are matched at the transi-
mined by minimizing() subject to this constraint. It is im- tions between wide and narrow parts of the wire. Let us
portant to recall that the complete grand canonical potentialegard the transition from wide to narrow fiksf. left part of
of the nanowire includes terms stemming from the hard-coreFig. 1). If the z coordinate is directed along the wire axnds
repulsion of the core electrons as well as the exchange emn abbreviation fox in the two-dimensional case and for
ergy of the conduction electrons. It is the interplay of thesgx, ,x,) in the three-dimensional case, describing the dimen-
terms with the kinetic energy of the conduction electrons thasion(s) perpendicular to the axis, the wave functions are
determines the equilibrium density of the bulk metal. We cargiven by
take these interactions into account, to lowest order, by as-
suming the system is incompressible, with the density fixed iKnz Kz
at the bulk value. W (z<0x)=€"n (I)N(XHZ e VIR (),
Determining the geometry of the wire that minimiz@s N (12)
subject to these constraints is a well-posed problem, but is,
unfortunately, outside the scope of the present investigation. _
Here we content ourselves to study the WNW geometry, for W(z>0x)= 2, thye rhn(x), (12)
which the scattering matrix may be computed exactly. One "

motivation to study an arbitrary geometry, such as the WNWyhere we have assumed an incoming wave from the left of
geometry, which may not minimiz& subject to the above ynjt amplitude, andb, and ¢, are transverse eigenfunctions

constraints, is that both kinetic effects and nonisotropic ioniGn the wide and narrow parts of the wire, respectively, and
interactions may lead to more complicated constraints on thgre given by

geometry. The comparison of the present results for an
abrupt geometry to previous resdft$or smooth geometries 2 N
indicates that the precise form of the geometry is not crucial, dy(x)= \/;sin(F(er D/Z)) N=1.2,..., (13
justifying the present approach.

In the following, it will be assumed that the volunhei?
of the nanowire(or the ared_d for 2D nanowire$ remains bo(X)= \ﬁsin(n—W(Xde/Z)) n=12 (14)
constant under elongation, i.e., we assume an ideal plastic " d d e

deformation. It can be shown that relaxation of this con-, he 2D db | . - f
straint, to include e.g., a small elastic deformation, does nof the case, and by an analogous expression consisting o

modify the mesoscopic effects in an essential Wapiffer- & product of two sine functions for the 3D case. Heres the
entiating the above expression farand performing a partial diameter of the wide part of the wire antithe diameter of

integration oveE, one obtains the general result the narrow part. _In the 3D case, the transverse modes have in
general two indices, e.gR and Q, but we can order the
states according to their energy and so characterize them by

_1 J one quantum numbed; P andQ are then functions oN.
F= ;f dET(E) Im[é_Lln de(S(E)]]. 10 rhe wave number&y andk, are
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om m2N2 t=p+pr’. (26)
Kn= ?E— D7 (15

The scattering matrix is obtained by normalizing the wave
amplitudes with respect to curretihe unitarity ofSreflects

) /2m - 202 . current conservation With
n— o = , e PR
h? d? tan=(Kn/Kn)"an, T = (K /Ky Y, ete.,

whereN=N for the 2D case andN?=P(N)?+Q(N)? for @)
the 3D case. the scattering matrix is given by
The solution of the Schabnger equation must obey two -
conditions at the transition poimzt=0: S“):( rot ) 29)
(1) Continuity of the wave function fore[ —D/2,D/2] o)
in two dimensions X;,X,e[—D/2D/2] in three dimen-
siong: The S matrix for the combined WNW geometry may be
constructed from three scattering matri@%¥, U, andS®),
Dp(X)+ 2 Ten@r (X) =2 thndn(X)O(d/2—|X|), describing the scattering at the WN boundary, the free propa-
N n gation within the narrow section, and the scattering at the

(17)  NW boundary, respectivelysee Fig. 1 The free propaga-
where®(x) is the Heavyside step function and is an abbrelion in the narrow section is described by the matrix

viation for the produc® (d/2—|x,|)®(d/2—|x,|) in the 3D 0 X
case. U= © X = Snexplik,L). (29)
(2) Continuity of the first derivative of the wave function (X 0) " on €XPCiky

for xe[—d/2,d/2] in two dimensions X; ,x, e[ —d/2,d/2]

. . : The NW transition is associated with a matrix
in three dimensions

r/ tl
Kn®n(X) = 2 IarnKnr @y (X)= 2 thnKn@n(X). SQ):(_ —)’ (30)
N’ n

t r
18 \which can be calculated ik, or can be seen by symme-
These equations can be transformed into matrix equations fary considerations. To compute the f@lmatrix, we use the
r andt’ by multiplication with®y,(x) and ¢,(X), respec- linear equations connecting the current amplitudes propagat-
tively, and integration over the appropriaterange. Using ing between the individual scattering matrid¢ese Fig. 1 for

the abbreviations an explanation of the notatign
d/2 b+ a+
o= | axBu00 6400, (19 S| g
bsl as1
KNN’:5NN’KN1 knnrzgnnrkn, (20) _ b_
a
two equations for andt are obtained: 51 —U 51 (31)
ag bs |’
1+r=pt, (21) 52 52
+ +
pTK—pTKr=kt', (22 °%| _ o 2
Note that thep matrix is not orthogonal. Equatiorig1) and b§2 5‘52 '
22 I i L . s .
(22) can be solved, and we obtain Eliminating the unwanted variables in this set of linear equa-
t'=2(k+p'Kp)~1p'K, (23)  tions, and rewriting the equations in the form
r=pt'—1. (24) bg, ag, -
An exactly analogous calculation for an incoming wave from bg2 B agz '
the right side gives o ) o
relating ingoing and outgoing currents, the f@Imatrix is
r'=(k+p'Kp) Yk—p'Kp), (250  found to be
|
op ST+ S (1= UpsSTU2S5) MUsSiUaSh Si3(1- U817 U S) MU 1283?2) @3
S (1-UpSHULST) TUpS S +SH(1-Up S5 U,81) MU 4S5 U 1S
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The operatolP is a projection operator onto the undampedtively large (3\2), while it is small in Fig. 2b) (0.5\2). In
modes in the wide part of the wire. Note that the individualboth cases, conductance quantization can be observed; when-
matricesSY), S, andU are infinite-dimensional matrices ever a channel in thél part closes(as the diameter is de-
describing scattering and propagation in all available modesreasey the conductance decreases and reaches a plateau at
including the evanescent modes. The f@lmatrix, on the  an integer multiple of 8%/h. The conductance does not
other hand, connects the incoming and outgoing asymptotighow a perfect steplike structure, though: When the narrow
states, and thus has a finite dimension for a given enérgy part is short, there will be tunneling through the constriction
determined by the total number of transverse mod@&th  hetqre 4 channel opens, and reflection above the threshold.
€,<E. The inclusion of the virtual intermediate states,tpis will smear out the steps, leading to a rather smooth

which describe tunneling processes, is crucial to solve th?ransition between the platea{isee Fig. 2)]. When the

Schralinger equation accurately. However, the contrlbutlonnarrow part is quite long, on the other hand, there is almost

of the evanescent modes decreases exponentially with in- . I
creasing energy. In practice, we found numerical converi© tunneling, but a resonant structure near the transition
gence of theS matrix if roughly 20 times more modes than POINtS occurdFig. 2@)]. This is due to the alternating con-
the undamped modes in thé part were retained structive and destructive internal reflection within the
: 34
We remark that the elements of tSamatrix can also be constriction _ _

found by considering e.g., the transmission maSix as the The cohesive force is strongly correlated with the conduc-
sum of the directly transmitted current amplitudes and thda@nce. In Fig. 2a), the modulus of the force increases along
multiply backscattered current amplitudes. This results in ghe conductance plateaus, while it decreases sharply at the

geometric series, which can be summed to obtain the resufonductance steps. The behavior is qualitatively similar to
(33). the result for smooth 3D geometries presented in Ref. 15,

and to the experimental results for 3D Au nanowftég.hus
IV. 2D NANOWIRE we see that the essential correlations of the electrical and
) ) ) ) ) mechanical properties of nanowires are present even in 2D
_Inthis section, we investigate the properties of 2D nanoWsystems, and even for abrupt geometries. For the extremely
ires. There are several motivations to study 2D systémSihort nanowire considered in Figit, similar force oscilla-
First, a quasi-2D nanowire could be experimentally realizedjqng correlated with the conductance steps are preseet
in a thin metallic film. Secondly, the characteristic eIectrlcaIFig_ 4), but they are superimposed on a much larger back-
and mechanical properties of a nanowire, namely, conducyroynd force. The pronounced difference in the force in Figs.
tance quantization and force oscillations, are already prese@(a) and 2b) indicates a breakdown of the invariance fof

in 2D systems, and it is worthwhile to investigate to what,\qer 4 stretching of the geomettyz) —d(\z), which was
extent the universality of the mesoscopic force oscillations ’

predicted in Ref. 15 depends on dimensionality. Further, 2D

electronic structure is easier to visualize, making it simpleto  s[- T " T " 5T ] s T T T
study the correlations between the measured quantities anc (a) A=3 Ap ] 4 (b) A=0.5 A ]
the local electronic structure. Finally, and perhaps most im- = | 1 =r 1
portantly, certain of the phenomena studied here are directIy“'&3 B ] ”&3 - ]
applicable to 2D quantum point contacts formed in semicon- ., *[~ ] o [ 7]
ductor heterostructurés?® While the predicted mesoscopic 1+ . 1+ .
force oscillations of ordeEg/\r would be many orders of ol ] o ]
magnitude smaller in doped semiconductors due to the © 0
smaller Fermi energy and correspondingly longer Fermi [ d S
wavelength, and would likely be hidden by the much larger — = -
cohesive forces associated with the covalently bonded elec-5 2 717 X 1
trons of the valence band, the charge oscillations predicted to2 [ 4 B .
accompany the quantized steps in the conductance shoul® 4 = .
have a comparable size in both metallic and semiconductor 4+, 7 -15 -
quantum point contacts, namely, of order the fundamental 4t 1 . 1 . | | N T N B |
2 4 6 02 04 06 08 10 12
charge quantune. L Dl L Dl
A. Force and conductance FIG. 2. Electrical conductance and tensile force for two differ-

. . ent 2D wires with WNW geometry as a function of the lengtbf
Once theS matrix (33) is known, the conductance and the narrow part. Assuming area conservatibns varied from a

C(_)hesive force can be C_alculated from E¢$. and (10). . perfect wire(where narrow and wide parts have the same diarmeter
Figure 2 shows the behavior of the conductance and cohesiVgysi| the last conductance channel breals.A wire with a rela-

force. as a funct[on of the elongation of .the wire. An |de_al tively large area of the narrow parh& 3.002) and (b) a wire with
plastic deformation of the narrow part is assumed, which, smaller areaf=0.5\2) are shown. The diameter of the wide part
means that its areA=Ld=LD is held constant., being  is 2.9\, fixing the total number of asymptotically propagating
the initial length of the narrow section. The wide sections ofmodes to be 5. The dotted curves show the adiabatic approximation
the wire support five propagating modes at the Fermi energyto conductance and force, the dashed curves give the surface ten-
this fixes the conductance of the wire before deformation tion, the leading order contribution in a semiclassical expansion of
be G=5G,. In Fig. Aa), the area of thd\ part is compara- the force. The arrows indicate the geometries used in Fig. 5.
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B. Mesoscopic force and charge fluctuations

In order to understand the overall behavior of the cohe-
sive force, it is useful to consider a semiclassical
expansiofr®of Eq. (8). Formally, the density of states may
be writtenD(E) =dN(E)/dE, whereN(E) is the total num-
ber of states with energy less th&nin the system. The
behavior ofN(E) for 2D domains with hard-wall boundary
conditions was first investigated by We§land was further
developed by Kac and othets3 The Weyl expansion of
N(E) for a 2D domain with a polygonal boundary with
corners i$?

A aA
N(E)=5k§—ﬂkE+2c+5N(E), (34)

wherekz= \2mE/#%? is the wave vector associated with en-
ergyE, A is the area of the domai@A the circumference
of the domain, andC is a constant depending on the topol-
ogy, in this case

F [Ex/Ag]

4 6 _ LTy
L[] C_Z‘l 247y’ (39

FIG. 3. Electrical conductance and cohesive force for 2D wireswhere v; is the interior angle of corner, and SN(E) is a
with various outer diameter®. The area of the narrow part was fluctuating term associated with the discreteness of the level
held constant, so the initial lengttwhen D=d) of the wires is  spectrum, the energy average of which is Z&rdlote that
different. The area of the narrow part is 80as in Fig. 2a). The  Eq. (34) includes a factor of 2 for spin. The shift in the total
curves are vertically offset. number of modes due to the presence of the sharp corners is
given by C=1/9 for the WNW geometry of Fig. 1.

efound within the WKB approximatiotr,due to strong tun- Integrating Eq(8) by parts and taking the limf—0, one

neling effects in very short wires. fi
The cohesive force decays to zero as the wire is eIongateoP
past the point where the last conductance channel is cut off, Er 7Ep 2E¢
though rather more slowly than the conductance itself. Q=—f N(E)dE=— —~A+ —JA—-2EC+5Q,
remains noticeably finite even for the largest elongations 0 NE SAr
shown in Figs. £a) and 2b), althoughG is exponentially (36)
small. The force in this regime arises from the variation ofyhere 5() is a fluctuating mesoscopic correction. Differenti-
the free energy due to a deformation of the geometry in theting () with respect toL, subject to the constrainé
region classically forbidden to electrons, and is clearly larger— const, yields a semiclassical expansion for the force,
in the shorter wirgFig. 2(b)], where tunneling effects are
more important. This effect is simple to understand: even 2E- d
when the probability to tunnel all the way through the nar- F=- 3_)\F EﬁAJF oF, (37)
row section is exponentially small, the probability eater
the narrow section need not be sniaée Fig. &d)], so the Where sF=—3(5Q)/JL. The leading-order term in the
electron gas is still sensitive to its shape. semiclassical expansion of the force is the surface tension,
It is clear from Eq.(10) that all states with energy smaller Fsut- FOr the WNW geometry, the circumference of the
than the Fermi energy contribute to the total force. On thehanowire is)A=2L+2(D —d)+const, and one obtains
other hand, the graphs show that the force oscillations are 2
correlated to the behavior of the conductance, and thus must —_ 4Er +d_) (39)
be due to states near the Fermi energy. In Fig), Dne can Ut 3Ng Al

see that even the resonant structure in the conductance This indicates that the surface tension increases with increas-

{ievf;?\}:d in the force, leading to sudden changes in its delhg conductancdthe Sharvin formula read&/Gy~2d/\ ¢

Figure 3 shows the conductance and cohesive force s 2D) and with decreasing areaof the wire. The surface

function of elongation for wires with different outer diam- tgn§|||on 1S plotte((jj n Fig. 2 as a dashed curve. The exact force
eters. While the curves are distinct at the beginning of the >%! ates around . . .
' The Weyl expansion for the electronic charge of the

eIongatlon(whe're inner and outer parts haye comparab!e dl—n anowire forT—0 is
ameter$, there is almost no difference at higher elongations,

and this is not only valid for the conductaritéut also for oA A
the force. This shows that even a narrow constriction (Q~)=—eN(Ef)=—e - —+2C) +6Qq.
coupled to contacts with infinite width can be accurately )\E Ng

modeled by wires of the type we regard here. (39
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T T I L B N A distance greater than or of ordeg. Thus one may expect
(@) A=3 g 1 (b) A=0.5 Az 1 the topological correction t6) due to the sharp corners to

7 evolve smoothly with the initial deformation, and to saturate

1 when the corners become separated by an amount of order
m Ae. In order to see this explicitly, let us consid&f),, as

. the work done by a topological fordg,,= F — F s which is

m present for small deformations~L,. For infinitessimal de-

—| formations, the adiabatic approximation becomes exact, and
- giVeS F(Lo) = _4E|:/3)\|: . ThUS Ftop(LO) :4E|:D/3)\|:LO

. Estimating the work done bly,, to be —F,(L)AL/2, and

- equating this to the change in the grand canonical potential
AQyop, gives AL=N\gLy/3D as the deformation regime

; where the topological force is important. The corresponding
/] Ny change in diameter is

(I I PR N P

4 6 02 04 06 08 10 12 - _ _
L Dl L D Ad=-DAL/Lo=—\/3, (42)

FIG. 4. Force and charge oscillations for two different 2D |nd|cat|_ng that the shift in the free energy of the system due
WNW wires as a function of elongation. Force oscillations are0 the introduction of sharp corners indeed saturates when
shown in the upper and charge oscillations in the lower half. ThdN€ Separation between the corners becomes comparable to
wire parameters are the same as in the preceding f|qMOWS the Fermi Wa.Velength. That the force a.SSOC|ated W|th thIS

a wire with a larger an¢b) a wire with a smaller area of the narrow change of topology can be large comparedEo/\¢ is a
part. remarkable result.

the surface tension from the exact force, and the charge fluc-
tuations6Qy, calculated by subtracting the term in parenthe-

ses in Eq(39) from the exact charge, determined from Eq_and cohesive force in metallic nanowires, an adiabatic
(7), are shown for the nanowires coﬁsidered in Fig. 2. Théalpproximatioﬁ5 was employed. The WNW geometry clearly

scale of the force oscillations Eg /\g (see Fig. 4, similar violates _th_e conditions of \_/alidity _Of the adiabatic approxi-
to the result for smooth 3D geometries presented in Ref. pgnation; it is nonethe_less Instructive to compare our exact
Strongly correlated with the force oscillations are charge OS[esuIt_s to those obtamed_ within an adiabatic approximation
cillations of order the fundamental charge quantanihe fOI‘.thIS abrupt geomety, in order to evaluate the importance
charge fluctuations5Q, are calculated in the absence of of interchannel scattering.

screening. Screening will be considered in Sec. V B; here it The solution of the 2D Schdinger equation can be writ-

suffices to note that the screening properties of the 2D eled®" formally gs\lf(x,z)z ¢Z(.X) ¥(2). Th.e agiabatic approxi-
ation consists of neglecting the derivativas,(x)/dz and

tron gas in, e.g., GaAs are quite poor, so that the chargf . N
fluctu%tions in sgmall—conducta?lce 28 quantum point contacgt “¢,(x)/92* [which would be justified if9D(2)/9z| <1], so
should be essentially unscreened. The predicted charge osdiftat the SCh“"F‘geT equation decogples Into separate trans-
lations should be experimentally observable with a local’€'S€ and longitudinal wave equations,

probe, such as a single-electron transistor.

In previous theoretical investigations of the conductance

h? g
C. Topological force -~ 2m ﬁ ¢ () =E.(2)$;(X), (42)
A close examination of Fig. 2 indicates that the exact
force deviates significantly from the surface tension for very r2 92
small elongations: The discrepancy is roughlg:3\g in —%Ed/(z):[E—Ey(Z)W(Z)- (43

Fig. 2@ and 14 /\¢ in Fig. 2(b) for L— L. This behavior

is to be contrasted with the results for smooth geometrie . L
presented in Ref. 15, in which the mesoscopic deviationirhe_z.D scattering problem then decouples into independent
one-dimensional scattering problems for each channel, and

from the semiclassical result were always found to bethe scattering matrix reduces to &2 matrix for each chan-
<Egr/\¢ (hence the ternuniversa). The nonuniversal cor- ="ng :
nel, which can be computed e.g., via the WKB

rections to the force in the WNW geometry at small demr'approximatioriL.s It is then straightforward to calculate con-

mations have a topological origin: Before deformation, theductance and cohesive force using the formalism described
perfect wire has a smooth boundary, but as the wire is 9

. in Sec. Il.
stretched, eight sharp corners develop. The shar corneﬂ% . . . . .
lead 1o a shifgt] in the gprand canonical pgtential P While the adiabatic approximation should be a good ap-

proximation for boundaries with smoothly varying diameter,
AQ = —2E(C= _2E.. (40) this condition is _certainly not fulfilled in th_e WNW geom-
etry. Employing it nonetheless, the equation of motion for
However, the electrons incident from the reservoirs can onlyhe longitudinal coordinate becomes just the 1D Sdimger
resolve the individual corners when they are separated by equation for a square barrier:
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72 g2 ~ related with the conductance steps, must also be essentially
“om 2 +0(z)0(L—2)V, | y(2)=E,(z) (44  determined by the electronic states at the Fermi energy. The
m gz spatial character of the electronic wave functions associated
. _ 2 2512 N 1/~2 = _ with scattering states of a given energyis naturally repre-
Vl"tEh ZVZV/kZEDF;T VT/hkF[t(lld ) . 1(D ] q ang " E,=E - sented through the local density of staePOS), D(E, x,z).
F(7°v?/kgD?). The transmission and reflection coeffi- tpo | pog of 2D quantum point contacts with smooth

cients are simply calculated using the continuity of the wav,, ,nqaries has recently been investigated by Ulreich and
function and its derivative at the potential steps. We find zwerger®

(1_ezikvL)(k§_Ki) While Refs. 18-20 regarded the density of states to be

r = : : : , independent of the coordinate and to depend only on tke
Tk etk -2k K, — 2P0tk K, — K2+ e?RbK coordinate in the narrow part of the wire, this is certainly not
the case for the full solution of the problem. Thelepen-
— 46"tk K, dence of the LDOS will be especially important when not

T2, oikL2 ik L 2. oiklu2’ only the width but also the length of the nanowire are on the
— K+ ek~ 2k K, — 2870k K, — K+ eTRKG nanometer scale, as in the experimentally relevant geometry.
(45) Since we know the exa@matrix and the eigenfunctions for
= = the WNW geometry, we can calculate the LDOS. The LDOS
whereK,=ke VE, /Er andk,=kg V(E,—V,)/Eg. is obtained as a sum of the densities created by the different
Inserting theS matrix elements(45) into Egs.(4) and  jncoming channels. Only reflected or transmitted waves from

(10), one obtains the adiabatic approximation for the conducthe same channel will superpose coherently. In the wide sec-

tance and force. These are shown as dotted curves in Fid. gon on the left side of the constriction, the LDOS at the
The adiabatic approximation captures some of the qualitativggmi energy is given by

features of the exact solutigsolid curve$, but is not quan-

14

titatively correct. Since the conductance is more or less 2 Nmax elKnz
guantized, the discrepancy with respect to th_e exact soluti(_)D(E,x,z< 0)= n 2 ——®(x)
has to be small. Not so for the force; the adiabatic approxi- N=1 [ [ViKn/m

mation clearly fails to describe correctly even the leading
order contribution to the force, the surface tension, when ”

several channels are transmitted, especially for very short + > (Sll)N’N\/:/q)N’(X)
nanowires. Interestingly, the adiabatic approximateares- N'=1 Ak /m
timatesthe effects of tunneling: both the conductance pla-

e—iKer

oy . - » —iK 2
teaus and the force oscillations are better defined in the exact n 2 (Sp) e N ® (%)
calculation than in the adiabatic approximation. Perhaps the N NN Bk im Y ’

most striking conclusion that one should draw from Fig. 3 is (46)
that even for the worst-case scenario of an abrupt geometry, . _
the adiabatic approximation works remarkably well for whereS; are the submatrices of th matrix (3), and we

nanowires of length. >\ . have chosez=0 at the boundary between wide and narrow
parts. For the calculation of the LDOS in the narrow part of
E. Local density of states the wire, we need the current amplitudes and b;z in the

The correlations between the quantized steps in the cofharrow section as a function of the incoming current ampli-

i _ . .
ductance and the oscillations of ordég/\g in the force tudesasl andasz (see Fig. 1 In the system of linear equa-
were interpreted in Ref. 15 in terms of a simple physica|tions(31), the unwanted variables have to be eliminated, and

picture, which was essentially the converse of the conventhe remaining equations may be rewritten as
tional interpretation. The conventional interpretafior® of

the experiments of Refs. 4 and 5 is that the jumps in the bsl agl

conductance are due to abrupt changes of the structure of the bt |~ Haz | (47
nanowire at the atomic level, e.g., through the breaking of S2 S2

bonds, and that these structural rearrangements manifestgg, fing

themselves as abrupt changes in the cohesive force. While

certainly a plausible viewpoint, the strong statistical t,

evidencé>°for conductance quantizatidmas no natural ex- t:( H 12) (48)
planation within this framework. In order to substantiate the g t2

converse point of view, that the conductance channels themz.., 1o components df given by the known matriceS®

selves can be interpreted as mesoscopic bonds providing t (2)
cohesion, it is worthwhile investigating the local electroniclﬁgq' (28}, S/ [Eq. (30, andU [Eq. (29)] as

structure of a nanowire within the jellium model. 1) 2) —1a(1)

The electrical conductance is determined by the electronic = (1= U387 Uz0 1S5 (49)
structure of the nanowire in the vicinity of the Fermi energy.
While the total force and charge clearly depend on all the
states with energy belo®r [cf. Egs.(6) and(10)], the me-
soscopic force and charge oscillations, because they are cor- tr1=(1-S{7 US55 U1p) 17U S5 (52)

t1= S5 U 11— Si7UxSH U1 1S, (50
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FIG. 5. Local density of stateB(Eg,x,z) at the Fermi energy
in a 2D wire. The area of thd part and the diameter of th& part
have been chosen as in Fig@R (A=3.02 and D=2.9\¢) to
make comparison with Fig.(d possible. The diameter of thd
partis(a) 2.4\g, (b) 1.9\, (c) 1.4\g, and(d) 0.9\ . The corre-
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of the wave function just after the last channel has closed. So
the highest open mode dominates the transverse structure in
the LDOS in the narrow part of the wire; this can be under-
stood considering that normalization of the wave functions to
unit current implies that the wave functions are proportional
to 1/yd—d,, whered, is the wire diameter at which thah
channel opens. Note that even in the tunneling redifig.

5(d)], the probability for an electron to enter the classically
forbidden region can be non-negligible.

As the conductance is a property of states at the Fermi
energy, we should expect not only the number of transmitted
channels to be reflected in the LDOS, but also the resonant
structure exhibited by the conductance in Figa)2This is
indeed the case; when we are at conductance maxima, the
LDOS inside theN part is much larger than that at the
minima, and is very strongly modulated in tkaedirection.

This is because constructive interference of the multiply
backscattered waves leads to a quasibound standing-wave
state at the conductance maxima, while the conductance
minima are associated with a condition of destructive inter-
ferencecompare Fig. &) (conductance minimujrand Fig.

5(c) (conductance maximurh For the first conductance
maximum after the channel opens as one widens the narrow
section, there is one maximum in the LDOS of thgart in

the longitudinal direction; for thath conductance maximum

of the resonant structure, there aréongitudinal maxima of

the LDOS. We thus see five maxima in Figch

sponding elongations are marked as arrows in the upper part of Fig. The electronic structure of the nanowire shown in Fig. 5

2(a). Black areas correspond tm:O.O/(EF)\E), white areas td
>1.0/(ExNZ), contours are drawn at equally spaced value®of
between these two limits.

to=(1—-SPU»S U 1S (52)

The LDOS in the narrow part of the wire is obtained as

o0

>

n'=1

ikn/Z

(tll)n’de’n’(X)

Nmax
D(E x,0<z<L)= > [

e ikn'(z=L) 1 2

+(t21)n/Nm¢n/(x)

* ikn/Z
t IN—T—— 0 (X
n%l |:( 12)n N\/W¢n ( )
—ikpr(z—L)

2
+(t22)n’Nﬁd’n/(x) ] . (53

The LDOS is of course symmetric about the axisL/2.

+

gives vivid pictorial support to the claim advanced in Ref. 15
that conductance channels should be interpreted as mesos-
copic bonds, which provide the cohesion of the system. The
claim advanced here that the electronic structure in such a
nanowire is dominated by quantum-confinement effects
rather than by atomistic effects is in agreement with STM
studies of electron “corrals” on Cu surfacés.

V. 3D NANOWIRE

While the results for 2D nanowires presented in the pre-
ceding section are interesting both in illustrating the gener-
ality of the mesoscopic phenomena in question and for their
relevance to experiments on point contacts in quasi-2D elec-
tron gases, the only experiments to date on the mechanical
properties of nanowirds involve 3D metals. In this section,
we consider a 3D wire with WNW geometry and square
cross section. For a square cross section, many modes are
doubly degenerate, as in the case of cylindrical symmetry,
leading to conductance steps of botb?h and 4e%/h. It
would be possible to lift this degeneracy by considering a
wire with a rectangular rather than square cross section. The

Figure 5 shows the LDOS at the Fermi energy for fourformalism to compute th& matrix (cf. Sec. Il)) and to obtain

different elongations of a wire with a relatively lor part
[it has the same parameters as the wire in F{g), %0 one

the force, charge, and conductar(see Sec. )lis the same
as in the 2D case, although one needs to include more eva-

can compare the conductance and force at these elongationsscent modes for an accurate computation ofShmeatrix
with the LDOS. It can be seen immediately that the LDOS than in the 2D case. It is straightforward to extend the
exhibits a highly nontrivial structure. The number of maximapresent calculation to wires of arbitrary cross section, if the
in thex direction in theN part of the wire reflects the number eigenfunctions and eigenvalues of the 2D Sdinger equa-

of open channels transmitted through the constriction; in Figtion are known for that cross section.

5(a) there are three open chann@sd thusG~ 3G, see Fig.
2), in (b) there are two open channels and(@ only one

Although the exactly solvable geometry considered here
is somewhat special due to the presence of sharp edges, the

channel is left. Figure (8)) shows the exponential damping gross behavior of the conductance and force is similar to that
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g1 T sfL T T T T T T order E-/Ag, which are correlated with the conductance

S s B V=125 A steps:|F| increases along the conductance plateaus, and
= =4 ] drops abruptly at the conductance steps. The resonant struc-
Qs @50 ] ture in the conductance is also reflected in the first derivative
;2 ;2 C ] of the force, particularly on the last conductance plateau. The

. L b force is similar in magnitude to that calculated for a smooth

0 oL 5 geometry in Ref. 15 and observed experimentally in Au

0 oH 1 nanowires in Ref. 4: the forces required to cut off the last

- 1l 7] two conductance eigenmodes are of order E2B. and
=1L )] =l N 2.5E¢ /\g, respectively(recall thatEg /Ag=~1.7 nN in Au.
< L i <t . The surface tension has been plotted for comparison as a
B L . -3 7] dashed curve in Fig. 6. It has been computed analogously to
o2 - -4 - the 2D case from the Weyl expanston® of the grand ca-
\ T pyiny ] nonical potential,
S it 111 ]
4 6 8 05 10 15 20 25
L Dl L A 0-—g | 2T LIPS > CLi|+60,

Al " a2 ? 7 ans ot
FIG. 6. Electrical conductance and tensile force for two differ- F F F edges

ent 3D wires with WNW geometry and square cross section as a

function of the lengthL of the narrow part. The width of the narrow .
part is determined by a constant-volume constraid?=L,D2 whereV is the volume andV the surface area of the nano-

=V=const, wherd_, is the initial length of the constriction before Wire; the topological terms are proportional to the lengths of
deformation. In(a) the volume of the narrow part is given by  the edged i, and the appropriate constants &re=1/4 for
=4)2 while itis smaller ¥=1.25\2) in (b). The dimensionsigh) ~ @n edge with an inner angle of/2 andC;= —5/36 for an
are comparable with those of the Au wire studied experimentally inedge with an inner angle of782. The surface tension, or
Ref. 4. The dashed curves give the force expected by the surfagemiclassical approximation to the force, is obtained from
term plus topological correction. the derivative of the semiclassical approximation(xqthe
term in parentheses in E@54)] with respect toL, which

observed experimetally in 3D metallic nanowftgnd cal-  Yields

culated for smooth, adiabatic geometrtéghe agreement of

the present results for the WNW geometry with the experi- Ef/ md  wd?> 2

mental results of Ref. 4 is poorer than for the smooth geom- Fsurf=— A ﬁ+ 2LA 3 27 (55)
etries considered previoustyjndicating that the experimen-

tal geometry is undoubtedly much smoother than thator a 3D nanowire with WNW geometry and square cross
considered here. section. Aside from the initial deformation, where the topo-
logical force is importantcf. Sec. IV B, the force exhibits
oscillations centered about the semiclassical re@adshed
curve.

Figure 6 shows the conductance and tensile force as a |ne|:ig_ 6(b), a shorter wire whose conductance versus
function of elongation for two model 3D wires. Under elon- e|0ngation matches the experimenta| curve shown in F|g 1
gation, the narrow section is assumed to deform plasticallypf Ref. 4 is showni, was chosen such that the elongation
i.e., its volumeV=Ld?=L,D? is held constant, wherie; i required to decrease the conductance fra@y 6o 0 is 2\
the initial length of the narrow section. The inclusion of an~1 nm. We see that the conductance and force are corre-
additional, small elastic deformation can be shown not tqgted in a similar way. Due to the shorter length of the con-
modify the mesoscopic effects in an essential Wafhe  sriction, the conductance steps are smeared out by tunneling
compgrisor_l of the exact resylts_ shown here to the results gfq by above-threshold reflection; the plateauGat 4G,
an adiabatic approximation is similar to that in the 2D caseyng the associated structure in the force are no longer visible.
(cf. Fig. 2, so for clarity we have not shown them for the 3D The resonant structure in the conductance is also suppressed,
case. except on the last plateau, where the narrow section is long-

In Fig. 6(a), a nanowire with a volume of M is shown,  est. The overall magnitude of the force is larger than for
while a shorter wire with a volume of 1.28 is shown in  |onger constrictions, due to the increased surface tension,
Fig. 6(b). The width of the wide sections i®=1.76\r, and the total elongation required to break the nanowire is
which fixes the number of asymptotic propagating modes tdess.(Note that the effective surface tension can be reduced
be 6. In Fig. §a), one sees conductance plateausGat by up to a factor of 5 by including a small elastic
=1,3,4,6x Gy, with a pronounced resonant structure super-deformatior>) However, the oscillations of the force around
imposed due to multiple reflection at the abrupt junctionsthe semiclassical approximation are of the same order as in
between wide and narrow sections. The sequence of degethe previous casésee Fig. 7. The pronounced difference in
eracies corresponds to the square symmetry of the cross sd€igs. a) and Gb) indicates a breakdown of the invariance
tion (cylindrical symmetry, on the other hand, giv€s  of F under a stretching of the geomettyz) — d(\z), which
=1,3,5,6; - - X Gy, see Ref. 15 Just as in the 2D case dis- was found within the WKB approximatiol?, due to strong
cussed above, the force exhibits mesoscopic oscillations afinneling effects in very short wires.

(54)

A. Force and conductance
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T T T T |3I T T T T T 1 :'5 200 [ R 60 L B B ]
] T (b)) V=125 g 1 so—(b) V=125 A -
2 2 1 150 + F -
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215 — = & 1 FIG. 8. Density of states at the Fermi surface as a function of
Q’ 00 |- - %c"o S I elongation for 3D wires with parameters as in Fig. 6. The solid line
15 3 — 1 shows the LDOS integrated over the narrow part of the wire, the
30| _ E 1 - dotted line the DOS computed from E@).
’ i T A | \ T T I T I B
) [/\GF] 8 05 10 ]1'5[)\;]'0 23 In an interacting system, screening of the charge oscilla-

tions will occur. The net chargéQ including screening can
FIG. 7. Charge and force oscillations as a function of elongatiorbe estimated within the Thomas-Fermi approximé&ttoas
for two 3D wires with WNW geometry. The same parameters as infollows:
Fig. 6 have been used.

8Q=5Q,—e’D(Eg)4V, (57)
As in the 2D case, the force decays to zero with increas- ° F

ing elongation after the last conductance channel is cut offywhere §Q, are the charge oscillations in the noninteracting
although more slowly than does the conductance itggé case regarded above(E) is the density of stategntegrated
Sec. IV A for a discussion F remains non-negligible even over the length of the constrictipand the potentiabV due
for the largest elongations shown in Fig. 6, when the conio the charge imbalance on the wire can be estimated as
ductance is exponentially smafi.A similar effect was ob-
served experimentallfcf. Fig. 1 of Ref. 4, although it is not

. o
clear whether the effect was above the noise level. oV= ?Q (58
B. Charge oscillations and screening We have introduced a phenomenological quan@itgorre-

sponding to the total capacitance of the inner part of the wire

The charge on such a 3D nanowire may be calculateg, its surroundings. Equatior(67) and (58) can be used to

from Eq.(7), as in the 2D case. The charge on the nanowirg;ompute self-consistently the charge on the wire within lin-
changes as the wire is elongated due to surface terms argy response:

mesoscopic oscillations. The Weyl expansion for the elec-
tronic charge of the nanowire is

Qo
Q=—73———. (59)
1+e2D(Ef)/C
_ 8 T 1 . . .
(Q)=—el —5V——=V+ — >, CiL; | +6Qo. The denominator in Eq(59 may be interpreted as the

3 .
3NE 2Af NE edges Thomas-Fermi dielectric constant+e?D(Eg)/C=€. The

(56) charge in the noninteracting cag€, has already been com-
puted and discussddee Fig. 7.

The term in parentheses in E(6) varies smoothly as the On dimensional grounds, the capacitance ob@ysal,
geometry of the wire is altered, whiléQ, describes the where « is a geometrical constant of order lx (may de-
mesoscopic oscillations associated with the opening or clogpend logarithmically on the ratib/L). The density of states
ing of discrete transverse modes. can be computed by a spatial integral of the LDOS over the

In Fig. 7, the mesoscopic charge oscillatia¥@,, calcu- narrow section, or from the asymptotic scattering phase
lated by subtracting the term in parentheses in(B6) from  shifts via Eq.(5). The later definition includes the contribu-
the exact charge computed via E@), and the force oscilla- tion of the Friedel oscillations induced in the wide sections.
tions, calculated by subtracting the surface tension from thén Fig. 8, both densities of states are shown for wires with
total force, are plotted for both wires shown in Fig. 6 as athe same parameters as above. They are approximately equal,
function of elongation. As in the 2D case, there is a strongndicating that the excess charg€ induced on the nano-
correlation between the two quantities, and the charge oscilwire under deformation resides mainly on the narrow sec-
lations are of order the fundamental quantum of chage tion. The intricate resonant structureb{Eg) occurs due to
The force oscillations are, as in the case of an adiabatic gehe formation of quasibound states due to multiple reflection
ometry studied in Ref. 15, of ordéf /N, aside from the at the junctions of the wide and narrow sectigsse Fig. 5,
nonuniversal topological correction occuring for small defor-and would not be present for a smooth geometry, such as that
mations from an ideal wire, which was discussed in detail forstudied in Ref. 15. Aside from this resonant structure, the
the 2D case in Sec. IV C. overall magnitude oD (Eg) can also be determined from a
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Weyl expansion. To leading order, one find3(Eg) should also be present in quasi-2D quantum point contacts in
~(4L/EENg)G/Gy. Inserting this expression into EG9), GaAs heterostructures, and should be experimentally detect-

one finds able using a local probe, such as a single-electron transistor.
A final word should be added by way of addressing the
5Qo central controversy of this field, which can be stated as fol-
6Q~ 17066.G/Gya’ (60 lows: Is it the atomic structuré.e., the bondswhich deter-

mines the conductané®, % or should the conductance chan-
werers is the dimensionless electron gas parameter, whiche|s themselves be thought of as mesoscopic bonds that
takes values between 2 and 6 in metals. This indicates thgfovide the cohesion, and thus determine the structure?
the screening of the mesoscopic charge fluctuations is poor The conductance channels are the eigenstates of the elec-
for wires with small conductance. The screened mesoscopi¢qic scattering proble? and are thus the appropriate

charge fluctgations should be measurable with a local probgsaies to describe both the transport and thermodynamic
such as a single-electron transistor. properties of a nanowire, which is an open quantum-

The screening of the predicted charge fluctuations shoulghechanical system. These scattering states are linear combi-
be even weaker in 2D GaAs quantum point contacts, due td5ions of local bonding states, so there is no fundamental
the large dielectric constant, which enhances the capacitancg,niragdiction between the two viewpoints stated above: one

In the 2D case, the constant 0.66 is replaced by 0.52 in thg free 1o look at the problem in a localized basis of bonds or
denominator of Eq.(60), and the geomefrical factor i, 4 pasis of extended electronic eigenstates.
—ea, Wheree~13. This indicates that the predicted charge yowever. since an exact solution of the many-body

fluctuations are essentially unscreened for smalI—conductancgchr--(dinger equation for a nanowire is beyond our current

QPC’s in GaAs. capabilities, one is forced to make certain approximations,
Let us finally add a comment on the effect of screenedyhich are convenient in the basis of choice. Thus molecular
glectron—electron interactions on the free gné‘r?gy\_llthln dynamics simulatiofé-2>typically neglect any quantum co-
linear response, the Coulomb energy associated with theé Mg rence between different bonds, and amount to a computa-
soscopic charge imbalance is given by tional version of the classical ball-and-stick model of atomic
structure, where bonds are described by a short-range empiri-
5Qg 1 5Qg cal interatomic potential. This is an uncontrolled approxima-
AQc= 5cC 2 > : (61)  tion, which should be adequate to describe covalent bonds in
€ C+e"D(Eg) an insulator, but its applicability for monovalent metals with
The details of the derivation of Eq61) will be given nearly spherical Fermi surfaces like Au and Na is question-
elsewheré® Equation (61) indicates that the mesoscopic able.
charge fluctuations of orderlead to a negligible correction =~ The molecular-dynamics simulations involve empirically
to the free energy of the system, even in the li@it-0 of  determined short-range interatomic potentials whose charac-
perfect screening, justifying the independent-electron modeleristic length and energy scales mimic the quantum mechan-
of nanocohesion. ics of bonding. When playing classical mechanics with these
guantum forces, it is not too surprising if one obtains forces
VI. CONCLUSIONS pf the right order of _magnitudg. Such mod_els are of course
inadequate to describe electrical conduction, so to explain
In the present paper, we have investigated the conductinthe observed correlations in the conductance and force of
and thermodynamidincluding mechanical properties of metallic nanowires, a quantum-mechanical model whose ge-
metallic nanowires with a wide—narrow—wide geometry, us-ometry is fit to the results of the classical simulation is
ing a free-electron model with hard-wall boundary condi-constructed®2°The cost of working in a localized basis is
tions. All properties of the nanowire were related to the electhus the necessity of usirdifferent physical lawso describe
tronic scattering matrix, which was evaluated exactly,conductance and cohesion.
including all effects of tunneling and interchannel scattering. On the other hand, we have seen in the present faper
The present results confirm the central conclusion of Ref. 15lso Ref. 15that the observed correlations in the conducting
which was based on an evaluation of the scattering matriand mechanical properties of metallic nanowires can be ac-
within the adiabatic and WKB approximations, that closing acounted for naturally in ainglequantum-mechanical model,
conductance channel by stretching a metallic nanowire rewhich treats the mechanical and electrical properties of the
quires a force of ordeE /N, or roughly a nano-Newton in  system on an equal footing. In order to solve the quantum
monovalent metals, independent of the total number of conscattering problem, we have neglected the discrete atomic
ducting channels. structure, working in a jelliumlike model, which is equiva-
In contrast to this “universal” behavior under a smooth lent to assuming that the only effect of the lattice is to
deformation of the geometry, we have shown that the forcenodify the electron’s effective mass. This should be a rather
associated with a change in topology can be large comparegbod approximation for simple metals like Na and adequate
to Ef/\g, and indeed comparable to the tofalacroscopiz  for noble metals like Au. Defects in the atomic structure of
cohesive force. the wire or roughness in its surface introduce additional scat-
In addition, we predict that the net charge on a nanowirdgering, which can also be included in the jellium model in a
exhibits oscillations on the order of the fundamental chargeaatural way'? A drawback of the jellium model, or at least
guantume, which are synchronized with the force oscilla- of the assumption employed here and in Ref. 15, that the
tions and conductance steps. These charge oscillationsitive background deforms continuously as the nanowire is
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elongated, is the inability to describe the hysteretic behavionot be described in a ball-and-stick picture of bonding. It is
found in the experiment of Ref. 4. The claim advanced heréncumbent on the experimenter to verify or falsify this clear
that the electronic structure in such a nanowire is dominateg@rediction of the jellium model.

by quantum-confinement effects rather than by atomistic ef-

fects is in agreement with STM studies of electron “corrals”
on Cu surface&’
In the end, the merits of the jellium model visvis an
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