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Abstract

Coherent resonant tunneling through a double quantum dot in an inhomogeneous magnetic field is investigated using a
generalized Hubbard model. The conductance is calculated analytically for the case of a single spin-1/2 orbital per dot and
numerically for dots containing multiple orbitals using a multi-terminal Breit-Wigner type formula, which allows for the
explicit inclusion of inelastic processes. Giant spin-dependent many-body corrections to the transport are predicted to be a
clear signature of the formation of a molecular-like state in the system. © 1997 Elsevier Science B.V.

PACS: 73.20.Dx; 72.10.Bg; 73.40.Gk; 75.30.Kz

Arrays of coupled quantum dots [ 1-6] can be thought of as systems of artificial atoms separated by tunable
tunnel barriers. Two complementary theoretical approaches have been useful in describing such systems in the
limit [7] where charging effects are important but interdot tunneling is incoherent and in the limit [8] of
coherent ballistic transport, with charging effects neglected. However, recent improvements in fabrication and
experimental techniques now make it possible to probe a third regime, where both interaction and coherence
effects play nontrivial roles [3-6]. In this regime, the system of coupled quantum dots behaves like an artificial
molecule, and must be described by a coherent many-body wavefunction [9-11]. In this Letter, we describe
some striking characteristic signatures of such a coherent molecular wavefunction in the low-temperature
magnetotransport through a double quantum dot. Our theoretical predictions should be experimentally testable
in currently available GaAs quantum dot systems.

An important consequence of coherent interdot tunneling is the formation of interdot spin-spin correlations
[12] analogous to those in a chemical bond at an energy scale J ~ t2/U, where U is the charging energy of
a quantum dot and ¢ = (h2/2m*) fd3x 11’,;*,(.1:)V211/,,(Jc) is the interdot hopping matrix element, ¥,, , being
electronic orbitals on nearest-neighbor dots. In a system with magnetic disorder, such a spin configuration
is pinned, and the resulting blockage of spin backflow [13] leads to strong charge localization. However,
an applied magnetic field will break such an antiferromagnetic bond when the Zeeman splitting gugB > J,
leading to an enormous enhancement of the charge mobility. Such spin-dependent many-body effects on the
magnetotransport should be experimentally observable provided I" + "V, kgT < J, where I" + I'") is the total
broadening of the resonant levels of the system; they can be readily distinguished from orbital effects in arrays
of quasi-two-dimensional quantum dots by applying the magnetic field in the plane of the dots. Observation
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Fig. 1. Schematic diagram of a double quantum dot.

Fig. 2. Resonant conductance at 7 = 0 in units of (e2/h) /(14 '@ /") as a function of the Zeeman splitting on dot 1 fory~! =0, 3, 10,
30 (top to bottom). If an additional uniform external field B > J is applied, the conductance is restored to the value for =1 = 0, leading
to giant magnetoresistance.

of the predicted giant magnetoresistance effect in the low-temperature transport through coupled quantum dots
would, we believe, represent a clear signature of the formation of an artificial molecular bond.

The system under consideration (Fig. 1) consists of a double quantum dot electrostatically defined [2-61] in
a 2D electron gas, coupled weakly to several macroscopic electron reservoirs, with a magnetic field in the plane
of the dots. Each quantum dot is modeled by 1-4 spin-1/2 orbitals, representing the electronic states nearest the
Fermi energy Er, and is coupled via tunneling to its neighbor and to one or more electron reservoirs. Transport
occurs between the left (L) and right (R) reservoirs; reservoirs 1 and 2 are considered to be ideal voltage
probes [15], and serve to introduce inelastic processes in the system [16]. Electron—electron interactions in
the array are described [7,14] by a matrix of capacitances C;;: we assume a capacitance C, between each
quantum dot and the system of metallic gates held at voltage V,, an interdot capacitance Cij, and a capacitance
C, between a quantum dot and each of its associated electron reservoirs. The diagonal elements of Cj; are the
sum of all capacitances associated with a quantum dot, Cs = C; + C; + 2C., and the off-diagonal elements
are —C;. These capacitance coefficients may differ from their geometrical values due to quantum mechanical
corrections [ 11,171, but enter only as parameters in our model. The Hamiltonian of the system is

H=Huns+ 3 €xCipCis+ 3 9 3 Vel o + HC), (1)

g.a k€a o.a.j kEa mE]

where df,, (m € j) creates an electron of spin o in orbital m of the jth dot and CL, (k € a) creates an electron
in state ko of reservoir a. Here

Hgors = ZZ fmad:nqdrmf + ZZZ(l‘mnd;mdna +Hc) + % Z(Ql + Qg)c,'j_'1 (Qj + Qg)- (2)

o.j mej o mel ne2 Lj

where Q; = —e meej d,t,,,d,,,c,, Qp = C,y Vg, and €0 (M € J) =€n+0B;/2, where B; is the Zeeman splitting
on dot j and €, is the energy of the mth quantum-confined orbital on dot J. For the case of a single orbital
per dot, Hyos reduces to a two-site Hubbard model with on-site repulsion U = e2Cy /( C% — Cf) and nearest
neighbor repulsion V = e2Ci/( C}% — C3#). A similar model for a double quantum dot has recently been studied
for the case of a large number of orbitals per dot with B; = 0 by Matveev, Glazman, and Baranger, and by
Golden and Halperin [11].

The N-body ground states |Oy) of the isolated double dot are nondegenerate, with energy EY, except at a
finite set of magnetic field values {B%, m =1,...,Int(N/2)}, where spin-flip occurs. At these special fields,
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the ground state is doubly degenerate and the low-temperature physics of the system is that of the Kondo
effect, discussed in Ref. [18]. For general B, however, the current through the system will be determined by
transitions [Oy_;) " |On) between nondegenerate ground states, provided the tunnel barriers to the reservoirs
are sufficiently large, and provided the temperature and bias are small compared to the energy of an excitation.
In this limit, the system can be shown to exhibit Breit-Wigner type resonances, and the expectation value of
the current flowing into reservoir a can be expressed using the multiprobe current formula [19]

e ’“/ T [ fale) — fa(e)]
Iy=< de NN e £ , (3)
h; ;(E—E?vaE?v—u)zﬁL(rN/z)z

where f,(€) = {exp[(€ — wa)/ksT] + 1}~ is the Fermi function for reservoir a,

T =21 % > (On-1Vindno | On) (O Vi IO —1)8(er — ES + ES ), (4)

k€a n.m.o

and I'y =3, I't. We demand that the expectation value of the current flowing into reservoirs 1 and 2 (which
serve as ideal voltage probes) be zero, which fixes w2 via Eq. (3). Eliminating £, .(€) from Eq. (3) and
taking the linear response limit, one finds the two-terminal conductance

e’ rsrR I'n[—f'(€)]de
G=— NN / N . (5)
h ; Fy+T% ) (e - B+ By ) + (In/2)’
(1)

The total width of the Nth resonance may be written Iy = I', + I'f + I'y’, where the quantity Fﬁ\,i)/ﬁ =
(', + ') /h may be interpreted as the total inelastic scattering rate due to phase-breaking processes in
the auxiliary reservoirs [16]. It should be emphasized that both the elastic and inelastic broadening of the
conductance resonances are suppressed by the many-body factors in Eq. (4), which lead to an orthogonality
catastrophe [20] in the large-N limit. The effect of such an orthogonality catastrophe in the sequential tunneling
regime has previously been discussed by Kinaret et al. [21] and by Matveev, Glazman, and Baranger [11].
Let us first consider the case of a single spin-1/2 orbital per dot, for which the conductance matrix elements
(4) can be obtained analytically. For simplicity, we assume that the tunnel barriers coupling the system to the
external reservoirs are described by the energy-independent parameters 273, ., [Vo|*6(ex —E) =T, a =L,R;
I'V, « =1,2. Then the conductance matrix elements depend only on the many-body wavefunctions of the
double dot. Spin disorder is introduced via a Zeeman splitting on dot 1, B) = 4t4, B, = 0. Experimentally,
such an inhomogeneous field could be produced, e.g., by the presence of a small ferromagnetic particle. The
total width of the one-particle resonance is found to be Iy = I' + I''", and the prefactor in Eq. (5) is
ryr/ry+ r}y =(r/4)/(1+ 4%) = Io. The maximum conductance at the one-particle resonance is thus

. e*/h
G“(|+AZ)(1+FU>/F)’ r=0.
= eIy /4hkgT, I+ < kgT <1/ 1+ 42, (6)

Inelastic scattering suppresses the resonant conductance at 7 = 0, but has no effect when the resonance
is thermally broadened. For U — V > ¢, the two-particle ground state of the double quantum dot has an
antiferromagnetic spin configuration characterized by the superexchange parameter

J=21(y — A+ \/y2 + 42), (7)

where y = t/(U — V). Note that 2ry < J < 4ty. The two-particle resonance is separated from the one-particle
resonance by eAQ,/(Cs — Ci) =V +21(1 + 42)"/2 — J, and the conductance is determined by the matrix
clements
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where A2 = 1 + A2/(y + /y*+ 42)? and the upper (lower) sign holds for j = 1 (2). For By > J,
the antiferromagnetic spin configuration is pinned, leading to a strong suppression of the amplitude to inject
electron 2 into dot 1, and a concommitant suppression of the second conductance peak. Inserting Eq. (8) into
Eqgs. (4) and (5), one finds the T = 0 resonant conductance

. 16(€*/h) (y/4)?
4(e2/h))/2
=e/07 4> 1.
1+ ro/r > (9)

A second doublet of conductance peaks for N = 3, 4 is separated from this doublet by AQ, ~ e (center to
center), and one finds G5 = G3, G; = G} due to electron-hole symmetry. The resonant conductance for N =2
is suppressed by a factor of y? compared to that for N = 1 due to collective spin pinning (one readily verifies
that the resonant conductance is suppressed by the same many-body factor in the regime of thermally broadened
resonances). This dramatic many-body suppression of the conductance is illustrated in Fig. 2 for several values
of . The effect of spin disorder is to be contrasted with that of a charge detuning 4 = (&) —€3) /2t, investigated
by Klimeck et al. [10] and by van der Vaart et al. [3], for which both G} and G3 are given by Eq. (6) at
T =0 (G; is then reduced by a factor of 2 in the thermally broadened regime). The very different effects
of spin and charge disorder stem from the fact that the repulsive interactions in Eq. (2) enhance spin-density
fluctuations, but suppress charge-density fluctuations.

Let us now consider the effect of an additional homogeneous magnetic field applied parallel to the inhomo-
geneous field, B = 4tA + B, By = B. For B > J, it is energetically favorable to break the antiferromagnetic
bond between the dots and form a spin-polarized state, thus preventing collective spin pinning effects. G is
then given by Eq. (6). The resulting magnetoresistance on resonance for 7 =0 and 4 >> 1 is thus

_ hgus(U—-V)’
e? 8t '

R* h -
A —-_g“B(1+F(‘),/1")~

= 10
AB e 4Jy? (10)

In the thermally broadened resonance regime, the factor 1 + I/ is replaced by 2kpT/wI. Since the
Coulomb energy U — V is typically large compared to the interdot tunneling matrix element ¢, the predicted
magnetoresistance is extremely large. This giant magnetoresistance effect is a direct indication of the field-
induced breaking of the artificial molecular bond between the dots ' .

The conditions necessary to observe the predicted magnetoresistance effect may be determined by including
the effect of transport through the triplet excited state via the method of Refs. [10,14]. One finds the resonant
conductance at B =0 for kgT > I' + I'D,

. e? exp(8J) 2r
G = 2hkgT 2exp(BJ) — 1 (r‘ * exp(B8J) + 1) ’ o

where I’ ~ 4y*I" is the sequential tunneling rate through the pinned antiferromagnetic ground state and I', = Iy
is the sequential tunneling rate through the triplet excited state. The magnetoresistance is thus reduced by a
factor of 2 at a temperature kgT|,; = J/In(I'/I). Increased coupling to the leads and/or inelastic scattering
can be shown [22] to lead to a similar admixture of transport through excited states when I + I @ ~ J.
We therefore expect the predicted giant magnetoresistance effect to be observable for kg7, I' + I'? < J. In

! The parallel quantum dot geometry of Hofmann et al. [5] should exhibit a similar magnetoresistance effect in the thermally broadened
resonance regime.
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Fig. 3. Zero temperature conductance of a double quantum dot with inhomogeneous field 8) — B, = 1.3 T as a function of the gate voltage
Qp = CyVp. Each dot has four spin-1/2 orbitals with random energies and mean level spacing 0.03 meV. The orbitals on neighboring dots
are coupled by random tunneling matrix elements with mean 7 = .015 meV. The coupling of the dot orbitals to the external reservoirs
is random with mean value /" = 4 peV (/Y = 0). 2/Cy = 1 meV and C;/Cy = 1/3. Conductance peaks suppressed at B = 0 due to
collective spin pinning are marked by arrows.

currently available GaAs quantum dot systems, charging energies are typically of order 1 meV, and one expects
tunneling matrix elements ¢ ~ 0.1 meV for moderate to strong interdot tunneling, so values of J in the range
0.01-0.1 meV should be attainable.

The binding energy J of the artificial molecular bond formed in coupled quantum dots is enhanced for strong
interdot tunneling. However, for sufficiently strong interdot tunneling, the single-orbital approximation employed
in the analytical calculation above may break down, as discussed in Refs. [4,11]. Let us therefore consider a
double quantum dot with four spin-1/2 orbitals per dot, described by Eqgs. (1) and (2) with random €,,, tmn,
and Vi, as specified in Fig. 3. For these parameters, the bandwidth of the interdot tunneling is comparable to
the width of the level distribution in each dot. A Zeeman term corresponding to a local field of 1.3 T is included
on dot 1. Eq. (2) is solved numerically via the Lanczos technique, and the conductance calculated at 7 = 0
using Eq. (5) is shown as a function of gate voltage in Fig. 3. When an additional homogeneous field B=1T
exceeding the estimated interdot spin-spin interaction is applied to the system (upper curve), the conductance
exhibits a sequence of eight doublets, corresponding to the successive addition of 16 electrons to the double
dot. The splitting within a doublet is due to interdot tunneling and Coulomb interactions, as discussed above
and in Refs. [4,10,11], while the splitting between doublets arises due to collective Coulomb blockade [9].
Similar conductance spectra have recently been observed experimentally in double quantum dots by Waugh et
al. [4] and by Blick et al. [6]. At B =0, however, several conductance peaks are strongly suppressed, though
both peaks within a doublet are never suppressed simultaneously (a similar pattern of peak suppression was
obtained for several other realizations of disorder). The magnitude of the conductance peak suppression varies
from doublet to doublet due to the random interdot coupling t,,,, which implies a random superexchange J, but
is consistent with Eq. (9) for large 4. The predicted giant magnetoresistance effect thus persists even when
the bandwidth of interdot tunneling exceeds the level spacing of a quantum dot.

In conclusion, we have shown that the formation of an artificial molecular bond due to interdot superexchange
can drastically modify the low-temperature transport through coupled quantum dots in an inhomogeneous
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magnetic field. The giant magnetoresistance effect proposed here for coupled quantum dots is expected to be
quite general in narrow-band strongly correlated systems with magnetic disorder.

C.A.S. thanks the ISI for hospitality during the completion of this work. This work was supported by the
U.S. Office of Naval Research and the Swiss National Science Foundation.
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