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Jellium Model of Metallic Nanocohesion
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A unified treatment of the cohesive and conducting properties of metallic nanostructures in term
the electronic scattering matrix is developed. A simple picture of metallic nanocohesion in wh
conductance channels act as delocalized chemical bonds is derived in the jellium approxima
Universal force oscillations of ordeŕ FylF are predicted when a metallic quantum wire is
stretched to the breaking point, which are synchronized with quantized jumps in the conducta
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Cohesion in metals is due to the formation of band
which arise from the overlap of atomic orbitals. In a meta
lic constriction with nanoscopic cross section, the tran
verse motion is quantized, leading to a finite number
subbands below the Fermi energy´F . A striking conse-
quence of these discrete subbands is the phenomeno
conductance quantization [1]. The cohesion in a metal
nanoconstriction must also be provided by these discr
subbands, which may be thought of as chemical bon
which are delocalized over the cross section. In this Le
ter, we confirm this intuitive picture of metallic nanoco
hesion using a simple jellium model. Universal forc
oscillations of ordeŕ FylF are predicted in metallic nano-
structures exhibiting conductance quantization, wherelF

is the Fermi wavelength. Our results are in quantit
tive agreement with the recent pioneering experiment
Rubio, Agraı¨t, and Vieira [2], who measured simultane
ously the force and conductance during the formation a
rupture of an atomic-scale Au contact. Similar experime
tal results have been obtained independently by Stalder
Dürig [3].

Quantum-size effects on the mechanical properties
metallic systems have previously been observed in ult
small metal clusters [4], which exhibit enhanced stab
ity for certain magic numbersof atoms. These magic
numbers have been rather well explained in terms
a shell model based on the jellium approximation [4
The success of the jellium approximation in these clos
nanoscopic systems motivates its application to open (
finite) systems, which are the subject of interest he
We investigate the conducting and mechanical propert
of a nanoscopic constriction connecting two macroscop
metallic reservoirs. The natural framework in which t
investigate such an open system is the scattering appro
developed by Landauer [5] and Büttiker [6]. Here, w
extend the formalism of Ref. [6], which describes electr
cal conduction, to describe the mechanical properties o
confined electron gas as well.

For definiteness, we consider a constriction of lengthL
in an infinitely long cylindrical wire of radiusR, as shown
in Fig. 1. We neglect electron-electron interactions, a
0031-9007y97y79(15)y2863(4)$10.00
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assume the electrons to be confined along thez axis by a
hard-wall potential atr ­ rszd. This model is consider-
ably simpler than a self-consistent jellium calculation [4]
but should suffice to capture the essential physics of t
problem. Outside the constriction, the Schrödinger equ
tion is separable, and the scattering states can be writ
as

c6
kmnsf, r , zd ­ e6ikz1imfJmsgmnryRd , (1)

where the quantum numbersgmn are the roots of the
Bessel functionsJmsgmnd ­ 0. These scattering states
may be grouped into subbands characterized by t
quantum numbersm andn, and we shall use the notation
n ­ sm, nd. The energy of an electron in subbandn is
´skd ­ ´n 1 h̄2k2y2m, where

´n ­
h̄2g2

n

2mR2 . (2)

The fundamental theoretical quantity is the scattering m
trix of the constrictionSsEd, which connects the incoming
and outgoing scattering states. For a two-terminal devic
such as that shown in Fig. 1,SsEd can be decomposed
into four submatricesSabsEd, a, b ­ 1, 2, where 1 (2)
indicates scattering states to the left (right) of the constri
tion. Each submatrixSabsEd is a matrix in the scattering
channelsnn0.

FIG. 1. Schematic diagram of a constriction in a cylin
drical quantum wire. Electrons are confined along thez
axis by a hard-wall potential atr ­ rszd. Two differ-
ent geometries are considered:rszd ­ sR 1 Rmindy2 1 sR 2
Rmind coss2pzyLdy2 (cosine constriction) andrszd ­ Rmin 1
sR 2 Rmind s2zyL 2 1d2 (parabolic constriction), withrszd ­
R for z , 0 and z . L. The minimum radius of the neck
Rmin as a function of the elongationDLyL0 is determined by a
constant volume constraint

RL
0 rszd2 dz ­ R2L0.
© 1997 The American Physical Society 2863
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In terms of the scattering matrix, the electrical condu
tance is given by [6]

G ­
2e2

h

Z
dE

2df
dE

TrhSy
12sEdS12sEdj , (3)

wherefsEd ­ hexpfbsE 2 mdg 1 1j21 is the Fermi dis-
tribution function and a factor of 2 has been included
account for spin degeneracy. The grand canonical pot
tial of the system is

V ­ 2kBT
Z

dE DsEd lns1 1 e2bsE2mdd , (4)

where the density of states in the constriction may
expressed in terms of the scattering matrix as [7,8]

DsEd ­
1

2pi

X
a,b

Tr

(
S

y
absEd

≠Sab

≠E
2 SabsEd

≠S
y
ab

≠E

)
.

(5)

Equations (3)–(5) allow one to treat the conducting an
mechanical properties of a confined electron gas on
equal footing, and provide the starting point for ou
calculation.

We are interested in the mechanical properties of
metallic nanoconstriction in the regime of conductanc
quantization. The necessary condition to have we
defined conductance plateaus in a three-dimensional c
striction was shown by Torres, Pascual, and Sáenz
to be sdrydzd2 ø 1. In this limit, Eqs. (3)–(5) simplify
considerably because one may employ the adiabatic
proximation [10]. In the adiabatic limit, the transvers
motion is separable from the motion parallel to thez axis,
so Eqs. (1) and (2) remain valid in the region of the co
striction, with R replaced byrszd. The channel energies
thus become functions ofz, ´nszd ­ h̄2g2

ny2mrszd2. In
this limit, the scattering matricesSabsEd, a, b ­ 1, 2
are diagonal in the channel indices, leading to an effe
tive one-dimensional scattering problem. The conditio
sdrydzd2 ø 1 and the requirement that the radius of th
wire outside the constriction not be smaller than an atom
radius (i.e.,kFR . 1) automatically imply the validity of
the WKB approximation.

Since the energy differences between the tran
verse channels in an atomic-scale constriction a
large compared tokBT at ambient temperature, we
restrict consideration in the following to the cas
T ­ 0. In the adiabatic approximation, the conductanc
becomes

G ­
2e2

h

X
n

Tn , (6)

where the transmission probability for channeln may
be calculated using a variant of the WKB approximatio
[11,12], which correctly describes the rounding of th
conductance steps at threshold. The density of states
2864
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the constriction in the adiabatic approximation is

DsEd ­
2
p

X
n

dQn

dE
, (7)

where the total phase shift is given in the WKB approx
mation by

QnsEd ­ s2myh̄2d1y2
Z L

0
dzfE 2 ´nszdg1y2, (8)

the integral being restricted to the region where´nszd , E.
The grand canonical potential of the system is thus

V ­ 2
8´F

3lF

Z L

0
dz

X
n

0

√
1 2

´nszd
´F

!3y2

, (9)

the sum being over channels with́nszd , ´F . Under
elongation, the tensile force is given byF ­ 2≠Vy≠L.
It is easy to show thatF is invariant under a stretching o
the geometryrszd ! rslzd, i.e.,

F ­
´F

lF
fsDLyL0, kFRd , (10)

wherefsx, yd is a dimensionless function. Nonunivers
corrections toF occur in very short constrictions, fo
which the adiabatic approximation breaks down. T
leading order correction to the integrand in Eq. (9)
2s3py64dkFrszd sdrydzd2, leading to a relative error in
F of ,2 sin2 uy4, where u is the opening angle of the
constriction. Using a modified Sharvin equation [9]
estimate the diameter of the contact versus elongat
for the experiment of Ref. [2] indicates an opening ang
u & 45±, for which the nonuniversal corrections ar
&8%, justifying the above approach.

Figure 2 shows the conductance and force of a me
lic nanoconstriction as a function of the elongatio
calculated from Eqs. (6) and (9). Here an ideal plas
deformation was assumed, i.e., the volume of the const
tion was held constant [13]. The correlations between
force and the conductance are striking:jFj increases along
the conductance plateaus, and decreases sharply whe
conductance drops. The constriction becomes unsta
when the last conductance channel is cut off. Some tra
verse channels are quite closely spaced, and in these c
the individual conductance plateaus [e.g.,Gys2e2yhd ­
14, 15, 19, 21] and force oscillations are difficult to re
solve. Figure 2 is remarkably similar to the experimen
results of Refs. [2] and [3], both qualitatively and qua
titatively. Inserting the valué FylF . 1.7 nN for Au,
we see that both the overall scale of the force for a giv
value of the conductance and the heights of the last t
force oscillations are in quantitative agreement with t
data shown in Fig. 1 of Ref. [2]. We wish to empha
size that the calculation ofF presented in our Fig. 2 con
tains no adjustable parameters [14]. The increase ofjFj

along the conductance plateaus and the rapid decreas
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FIG. 2. Electrical conductanceG and tensile forceF of a
cosine constriction in a cylindrical quantum wire of radiu
kFR ­ 11 versus the elongationDLyL0. For the calculation of
G, an initial lengthkFL0 ­ 50 was assumed. The dashed lin
indicates the contribution to the force due to the macrosco
surface tensionFS ­ 2s≠Sy≠L, whereS is the surface area
of the system ands ­ ´Fk2

Fy16p. FS determines the overall
slope ofF, on which are superimposed the quantum oscillatio
due to the discrete transverse channels.

the conductance steps were described in Ref. [2] as “el
tic” and “yielding” stages, respectively. With our intuitive
picture of a conductance channel as a delocalized meta
bond, it is natural to interpret these elastic and yieldin
stages as the stretching and breaking of these bonds.

The fluctuations inF due to the discrete transvers
channels may be thought of as arising from finite-siz
corrections to the surface tensions. However, as in the
case of universal conductance fluctuations [15], it is mo
instructive to consider the extensive quantityF itself,
rather than the intensive quantitys. Approximating the
sum in Eq. (9) by an integral, and keeping the leadin
order corrections, one obtains

V ­ vV 1 sS 2
2´F

3lF
L 1 dV , (11)

where V is the volume of the system,S is the surface
area,v ­ 22´Fk3

Fy15p2 is the macroscopic free energy
density, ands ­ ´Fk2

Fy16p is the macroscopic surface
energy. The remaining termdV is a quantum correction
due to the discrete transverse channels, and may be ei
positive or negative. Under an ideal plastic deformatio
the volume of the system is unchanged, and the tens
force is

F ­ 2s
≠S
≠L

1
2´F

3lF
1 dF , (12)

wheredF ­ 2≠sdVdy≠L. The first term in Eq. (12) is
the contribution to the force due to the macroscopic su
s
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face tension. This is plotted as a dashed line in Fig.
for comparison. The macroscopic surface tension det
mines the overall slope ofF. The quantum corrections to
F due to the discrete transverse channels consist of a c
stant term plus the fluctuating termdF. Figure 3 shows
dF for three different geometries and for values ofkFR
from 6 to 1200, plotted versus the corrected Sharvin co
ductance [9]

Gs ­
k2

FAmin 2 kFCmin

4p
, (13)

whereAmin and Cmin are the area and circumference o
the constriction at its narrowest point.Gs gives a smooth
approximation toG. As shown in Fig. 3(a), the force
oscillations obey the approximate scaling relation

dFsDLyL0, kFRd .
´F

lF
YsGsd , (14)

where Y is a dimensionless scaling function which i
independent of the precise geometryrszd. Equation (14)
indicates that the force fluctuations, like the conductan
are dominated by the contribution from the narrowest p
of the constriction, of radiusRmin. The scaling relation
(14) breaks down whenRminyR * 0.8.

Figure 3 shows that the amplitude of the force fluct
ations persists essentially unchanged to very large val
of Gs. It was found to be

DY ­ sY 2 2 Y
2d1y2 , 0.3 (15)

for 0 , Gs # 104. The detailed functional form of
Y sGsd, like the distribution of widths of the conductanc
plateaus, depends on the sequence of quantum num
gn, which is determined by the shape of the cross secti
However, the amplitude of the force fluctuationsDY was
found to be the same for both circular and square cro
sections. Both these geometries are integrable, and he
have Poissonian distributions of transverse modes. I
clearly of interest to investigate the force fluctuations f
nonintegrable cross sections, with non-Poissonian le
statistics.

The experiments of Refs. [2,3] observed well-define
conductance steps, but found no clear evidence of c
ductance quantization forGys2e2yhd . 4 [16]. Devia-
tions of the conductance plateaus from integer values
metallic point contacts are likely to be due to backsca
tering from imperfections in the lattice or irregularitie
in the shape of the constriction [12]. We find that suc
disorder-induced coherent backscattering leads to no
like fine structure [17] in the conductance steps and for
oscillations, with a reduction of the conductance on t
plateaus, but no shift of the overall force oscillations [18
Our prediction of universal force oscillations is consiste
with the experiments of Refs. [2] and [3], which foun
force oscillations with an amplitude comparable to o
theoretical prediction forGys2e2yhd up to 60.
2865
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FIG. 3. Force fluctuations versus the corrected Sharvin co
ductance. (a) Results for cosine and parabolic constrictions
cylindrical quantum wires with radiikFR ­ 6, 8, 10, 11, and
12 (left to right). The results for the cosine and parabolic co
strictions are almost indistinguishable when plotted as a fun
tion of Gs, despite the fact that the total elongation and tot
work done differ by roughly a factor of 2 in the two cases
The dependence onR is also very weak, except forRmin ø R
(the rightmost portion of each curve). (b) Force fluctuations fo
a cosine constriction in a square quantum wire with 120 co
ductance channels, and (c) for a wire with 1200 conductan
channels.

Molecular dynamics simulations by Landman
et al. [19], Todorov and Sutton [20], and Brandbyge
et al. [12] have suggested that the conductance steps a
force oscillations observed in Refs. [2] and [3] may be du
to a sequence of abrupt atomic rearrangements. Wh
the discreteness of the ionic background is not includ
in the jellium model, our results nevertheless sugge
that such atomic rearrangements may be caused by
breaking of the extended metallic bonds formed by ea
conductance channel. However, it should be emphasiz
that our prediction of universal force fluctuations of orde
´FylF is not consistent with the simulations of Refs. [19
and [20], which predict force fluctuations which increas
with increasing contact area. This discrepancy may ar
because we consider the equilibrium deformation of
system with extended electronic wave functions, whi
Refs. [12,19,20] use a purely local interatomic potenti
and a fast, nonequilibrium deformation [21].

In conclusion, we have presented a simple jellium
model of metallic nanocohesion in which conductanc
channels act as delocalized metallic bonds. This mod
predicts universal force oscillations of order´FylF in
metallic nanostructures in the regime of conductan
quantization, and is able to explain quantitatively rece
experiments on the mechanical properties of nanosco
2866
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metallic contacts [2,3]. The formalism developed here
based on the electronic scattering matrix should b
applicable to a wide variety of problems in the rapidly
evolving field of nanomechanics.
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