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Jellium Model of Metallic Nanocohesion
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A unified treatment of the cohesive and conducting properties of metallic nanostructures in terms of
the electronic scattering matrix is developed. A simple picture of metallic hanocohesion in which
conductance channels act as delocalized chemical bonds is derived in the jellium approximation.
Universal force oscillations of ordeer/Ar are predicted when a metallic quantum wire is
stretched to the breaking point, which are synchronized with quantized jumps in the conductance.
[S0031-9007(97)04243-9]
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Cohesion in metals is due to the formation of bandsassume the electrons to be confined alongztlagis by a
which arise from the overlap of atomic orbitals. Ina metal-hard-wall potential ai = r(z). This model is consider-
lic constriction with nanoscopic cross section, the transably simpler than a self-consistent jellium calculation [4],
verse motion is quantized, leading to a finite number obut should suffice to capture the essential physics of the
subbands below the Fermi energy. A striking conse- problem. Outside the constriction, the Schrodinger equa-
quence of these discrete subbands is the phenomenon tan is separable, and the scattering states can be written
conductance quantization [1]. The cohesion in a metallias
nanoconstriction must also be provided by these discrete o

; : = _ priketime

subbands, which may be thought of as chemical bonds Bimn (b5 7,2) = e (Yiun 1 /R) (1)
which are delocalized over the cross section. In this Letynere the quantum numberg,, are the roots of the

ter, we confirm this intuitive picture of metallic nanoco- gegsel functions/,, (yms) = 0. These scattering states
hesion using a simple jellium model. Universal forcemay pe grouped into subbands characterized by the
oscillations of ordee /A are predicted in metallic nano- quantum numbers: andn, and we shall use the notation
structures exhibiting conductance quantization, where ;, — (55, ). The energy of an electron in subbands

is the Fermi wavelength. Our results are in quantita—s(k) — &, + Ii%k2/2m, where

tive agreement with the recent pioneering experiment of s o

Rubio, Agrét, and Vieira [2], who measured simultane- e, = h~y, ) 2)

ously the force and conductance during the formation and 2mR?

rupture of an atomic-scale Au contact. Similar experimen-The fundamental theoretical quantity is the scattering ma-

tal results have been obtained independently by Stalder anfix of the constrictionS(E), which connects the incoming

Diirig [3]. and outgoing scattering states. For a two-terminal device,
Quantum-size effects on the mechanical properties ofuch as that shown in Fig. F(E) can be decomposed

metallic systems have previously been observed in ultranto four submatrices,s(E), a, B = 1,2, where 1 (2)

small metal clusters [4], which exhibit enhanced stabil-indicates scattering states to the left (right) of the constric-

ity for certain magic numbersof atoms. These magic tion. Each submatri$,s(E) is a matrix in the scattering

numbers have been rather well explained in terms ofhannelsv’.

a shell model based on the jellium approximation [4].

The success of the jellium approximation in these closed ___

nanoscopic systems motivates its application to open (in- R‘_—\f

finite) systems, which are the subject of interest here. K(z) z

We investigate the conducting and mechanical properties (’) L

of a nanoscopic constriction connecting two macroscopic A

metallic reservoirs. The natural framework in which to

investigate such an open system is the scattering approagfi. 1. Schematic diagram of a constriction in a cylin-

developed by Landauer [5] and Biittiker [6]. Here, wedrical quantum wire. Electrons are confined along the

extend the formalism of Ref. [6], which describes electri-axis by a hard-wall potential at = r(z). Two differ-

; ; ; ; nt geometries are consideredz) = (R + Rmin)/2 + (R —
cal ;:_onglucltlotn, to describe tltre mechanical properties of %mm)cos(zm/L)/z (cosine constriction) and(s) — Ryy +
connned €lectron gas as well. L (R — Ruin) (2z/L — 1)*> (parabolic constriction), withr(z) =
For definiteness, we consider a constriction of length g for ; < 0 andz > L. The minimum radius of the neck
in an infinitely long cylindrical wire of radiu®, as shown R, as a function of the elongatioAL /L, is determined by a

in Fig. 1. We neglect electron-electron interactions, andonstant volume constrairﬁé r(z)>dz = R?L,.
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In terms of the scattering matrix, the electrical conduc-the constriction in the adiabatic approximation is
tance is given by [6

given by [6] /6,

E

2
2¢2 —df bE) == Z d

G="— | dE—=THSLE)SRE). @)
where the total phase shift is given in the WKB approxi-

wheref(E) = {exd B(E — w)] + 1}7! is the Fermi dis- mation by

tribution function and a factor of 2 has been included to L

account for spin degeneracy. The grand canonical poten- 0,(E) = 2m/K*)/? f dZ[E — &,(2)]Y%,  (8)

tial of the system is 0

: (7)

the integral being restricted to the region wheyéz) < E.

= — ~B(E—p)
Q ksT f dED(E)In(1 + e . @ The grand canonical potential of the system is thus

where the _density of states in 'Fhe congtriction may be 8er (L , £,(2) 32
expressed in terms of the scattering matrix as [7,8] Q= —m o dz Z 1 - ? , 9)
1 a8 X . .
DE)=— > Tr Slﬁ(E) @B _ Sap(E) @Bl the sum being over channels with,(z) < er. Under
2mi 35 IE IE elongation, the tensile force is given By = —aQ /dL.

(5) Itis easy to show thaF is invariant under a stretching of

_ _ the geometry-(z) — r(Az), i.e.,
Equations (3)—(5) allow one to treat the conducting and

mechanical properties of a confined electron gas on an F = S—Ff(AL/L() kpR) (10)
equal footing, and provide the starting point for our Ar ’ ’
calculation.

We are interested in the mechanical properties of Eyvheref(x,y) is a dimensionless function. Nonuniversal

metallic nanoconstriction in the regime of conductanceFOITECtions toF occur in very short constrictions, for

quantization. The necessary condition to have wellWNich the adiabatic approximation breaks down. The
defined conductance plateaus in a three-dimensional coff2ding order correction to the integrand in Eq. (9) is
striction was shown by Torres, Pascual, and Saenz [9}:(37/64)’_‘”(2) (dr/dz)*, leading to a relative error in
t0 be(dr/dz)? < 1. In this limit, Eqs. (3)—(5) simplify © Of ~2si 0/4, where is the opening angle of the
considerably because one may employ the adiabatic a onstriction. U_smg a modified Sharvin equation [9] to
proximation [10]. In the adiabatic limit, the transverse estimate the_ diameter of the. contact versus glongatlon
motion is separable from the motion parallel to thaxis, for the experiment of Ref. [2] indicates an opening angle

so Egs. (1) and (2) remain valid in the region of the cont! = 45°, for which the nonuniversal corrections are

striction, with R replaced byr(z). The channel energies 5 Justifying the above approach.
thus become functions o, &,(z) = A2y2/2mr(z)?. In Figure 2 shows the conductance and force of a metal-

o i ; : lic nanoconstriction as a function of the elongation
this limit, the scattering matriceS,z(E), a, 8 = 1,2 . N
g ap(E) A calculated from Egs. (6) and (9). Here an ideal plastic

are diagonal in the channel indices, leading to an effec®

tive one-dimensional scattering problem. The conditiord€formation was assumed, i.e., the volume of the constric-

(dr/dz)? < 1 and the requirement that the radius of thetion was held constant [13]. The correlations between the

wire outside the constriction not be smaller than an atomi¢T¢€ and the conductance are striking} increases along
radius (i.e.krR > 1) automatically imply the validity of the conductance plateaus, and dgcrleases sharply when the
the WKB approximation. conductance drops. The constriction becomes unstable

Since the energy differences between the transhen the last conductance channel is cut off. Some trans-

verse channels in an atomic-scale constriction ard€rsechannels are quite closely spaced, and in these cases,

. . . 2 _
large compared tokzT at ambient temperature, we 1€ individual con((jju]f:tance pITItegus [eg‘/ﬁ? /}Il) ~
restrict consideration in the following to the casel% 1919, 21] and force oscillations are difficult to re-

T = 0. In the adiabatic approximation, the conductance®©lVe. Figure 2 is remarkably similar to t_he experimental
becomes results of Refs. [2] and [3], both qualitatively and quan-
titatively. Inserting the valuesr/Ar = 1.7 nN for Au,
_2¢? we see that both the overall scale of the force for a given
G = n Ty, (6) value of the conductance and the heights of the last two
force oscillations are in quantitative agreement with the
where the transmission probability for channelmay data shown in Fig. 1 of Ref. [2]. We wish to empha-
be calculated using a variant of the WKB approximationsize that the calculation df presented in our Fig. 2 con-
[11,12], which correctly describes the rounding of thetains no adjustable parameters [14]. The increasg bf
conductance steps at threshold. The density of states along the conductance plateaus and the rapid decrease at

14
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25 . face tension. This is plotted as a dashed line in Fig. 2,
20 B E for comparison. The macroscopic surface tension deter-
= - ] mines the overall slope df. The quantum corrections to

o BF E F due to the discrete transverse channels consist of a con-

& 10| = stant term plus the fluctuating ter&¥. Figure 3 shows

© o E E OF for three different geometries and for valueskgiR

5 E from 6 to 1200, plotted versus the corrected Sharvin con-
0F ] ductance [9]
1 -

— T g szmin — krCuin

2 OF E G, = = — : (13)

W — —

. :i - b whereAni, and Cpi, are the area and circumference of
4 b the constriction at its narrowest poinG, gives a smooth
sk | , ‘ ] approximation toG. As shown in Fig. 3(a), the force

0 0.5 1 1.5 oscillations obey the approximate scaling relation

27k SF(A k er 14
F(AL/Ly,kpR) = — Y(G,),
FIG. 2. Electrical conductanc& and tensile forceF of a (AL/Lo, krR) AF (Gs) (14)

cosine constriction in a cylindrical quantum wire of radius . . . . . S
krR = 11 versus the elongatioAL/L,. For the calculation of WhereY is a dimensionless scaling function which is

G, an initial lengthkzL, = 50 was assumed. The dashed line independent of the precise geometfy). Equation (14)
indicates the contribution to the force due to the macroscopiéndicates that the force fluctuations, like the conductance,
surface tensiorf’y = —od5/9L, whereS is the surface area zre dominated by the contribution from the narrowest part

of the system and- = epk7/167. Fs determines the overall - g : ] : :
slope ofF, on which are superimposed the quantum oscillationsmc the constriction, of radiu®m,. The scaling relation

due to the discrete transverse channels. (14) breaks down wheRmix /R = 0.8.
Figure 3 shows that the amplitude of the force fluctu-

ations persists essentially unchanged to very large values
the conductance steps were described in Ref. [2] as “elagf G;. It was found to be
tic” and “yielding” stages, respectively. With our intuitive = w21
picture of a conductance channel as a delocalized metallic Ay =(¥> - Y7)/"~03 (15)
bond, it is natural to interpret these elastic and yielding . G, = 10*. The detailed functional form of
stages as the stretching and breaking of these bonds. Y(Gy), like the distribution of widths of the conductance

hThe Tluctuatltz)ns t;]nF (#:e ]EO the _dl_scre}te trafns.‘,:'ers.eéolateaus, depends on the sequence of quantum numbers
channels may De thought ot as arsing from finite-siz v, Which is determined by the shape of the cross section.
corrections to the surface tension However, as in the

) X . However, the amplitude of the force fluctuatioh¥ was
case of universal conductance fluctuations [15], it is MOr§.ind to be the same for both circular and square cross
instructive to consider the extensive quantiy itself,

; . X . sections. Both these geometries are integrable, and hence
rathef than the Intensive quantity. Approxlmatlng the_ have Poissonian distributions of transverse modes. It is
sum in Eq. (.9) by an mtegral, and keeping the Ie"’ldmgclearly of interest to investigate the force fluctuations for
order corrections, one obtains nonintegrable cross sections, with non-Poissonian level
statistics.

The experiments of Refs. [2,3] observed well-defined
] ) conductance steps, but found no clear evidence of con-
where V is the volume of the systen§ is the surface g, ctance quantization fo6/(2¢2/h) > 4 [16]. Devia-

_ 3 2 H : . .
area,w = —2erkp/15m" is the macroscopic free energy tjons of the conductance plateaus from integer values in

density, ando- = sxki/167 is the macroscopic surface metallic point contacts are likely to be due to backscat-
energy. The remaining ter@(} is a quantum correction tering from imperfections in the lattice or irregularities
due to the discrete transverse channels, and may be eith@irthe shape of the constriction [12]. We find that such
positive or negative. Under an ideal plastic deformationgisorder-induced coherent backscattering leads to noise-

the volume of the system is unchanged, and the tensilge fine structure [17] in the conductance steps and force

2
Q=wV+os—-C1 460, (11)
3Ar

force is oscillations, with a reduction of the conductance on the
9  2ep plateaus, but no shift of the overall force oscillations [18].
F=-o—rt+ -7 oF, (12)  Our prediction of universal force oscillations is consistent
F with the experiments of Refs. [2] and [3], which found
whereSF = —9d(6Q)/0L. The first term in Eq. (12) is force oscillations with an amplitude comparable to our

the contribution to the force due to the macroscopic surtheoretical prediction fo6G /(2¢2/h) up to 60.
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(a) ' /’\\[ /' metallic contacts [2,3]. The formalism developed here
05

based on the electronic scattering matrix should be
applicable to a wide variety of problems in the rapidly
evolving field of nanomechanics.
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