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A multiterminal conductance formula describing resonant tunneling through an interacting meso
system is derived and used to investigate the nonlinear conductance of a quantum dot. An e
gauge-invariant expression for theI-V characteristic which depends sensitively on the full capacita
matrix is obtained. A voltage probe is found to have a dramatic effect on the nonlinear conduc
[S0031-9007(96)01247-1]
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The problem of coherent transport through an interac
mesoscopic system coupled to macroscopic electron re
voirs is of considerable current interest [1–10]. Recen
substantial progress has been made in treating tran
through correlated systems using nonequilibrium Gree
functions [5–7] and bosonization [8,9]. However, Büttik
has emphasized [10] that a gauge-invariant descriptio
nonlinear transport requires a proper treatment of the lo
range Coulomb interaction which explicitly includes t
external gates and reservoirs. In this Letter, we deriv
Breit-Wigner type formula for the resonant conductan
through an arbitrary interacting system with a nondeg
erate ground state, coupled weakly via tunnel barrier
several electron reservoirs, and use this formula to inve
gate nonlinear transport through a quantum dot, includ
inelastic processes explicitly. It is shown that the inc
sion of long-range Coulomb interactions via a capacit
charging model [11] leads to a gauge-invariantI-V char-
acteristic which depends explicitly on the full capacitan
matrix.

An arbitrary interacting mesoscopic conductor coup
to M macroscopic electron reservoirs is described by
Hamiltonian

H ­ Hintshdy
n , dnjd 1

MX
a­1

X
k[a

ekc
y
k ck

1

MX
a­1

X
k[a

X
n

sVknc
y
k dn 1 H.c.d , (1)

wherehdy
n j creates a complete set of single-particle sta

in the mesoscopic system,cy
k[a

creates an electron i
statek of reservoira, andHint is a polynomial inhdy

n , dnj
which commutes with the electron numberN ­

P
n dy

n dn.
We denote the ground state ofHint for eachN by j0N l
and the ground state energy byE0

N . We assumeE0
N to

be nondegenerate, as is generically the case in a non
magnetic field.

The expectation value of the current flowing into res
voir a can be expressed using the formalism of Meir a
Wingreen as [5]
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Ia ­ 2
e
h

Z
de Im Tr hGased fG,sed 1 2fasedGr sedgj ,

(2)

whereGa
nmsed ­ 2p

P
k[a VknV p

kmdse 2 ekd is a matrix
characterizing the tunnel barrier connecting reservoira

to the system,G,,r
nm sed are Fourier transforms of the

Green’s functionsG,
nmstd ­ ikdy

ms0ddnstdl and Gr
nmstd ­

2iustd khdnstd, dy
ms0djl, which describe propagation within

the mesoscopic system in the presence of coupling to
leads, andfased ­ hexpfse 2 madykBTg 1 1j21 is the
Fermi function for reservoira. If the tunneling barriers to
the reservoirs are sufficiently large, and if the temperat
and bias are small compared to the energy of an excitat
then the current through the system will be determined
transitionsj0N21l ! j0N l between nondegenerate groun
states. In the vicinity of such a resonance, the Gree
functions can be shown to have the form

Gr
nmsed ­

k0N21jdnj0N l k0N jdy
mj0N21l

e 2 E0
N 1 E0

N21 1 iGN y2

1 additional poles, (3)

G,
nmsed ­

ik0N21jdnj0Nl k0N jdy
mj0N21l

P
a G

a
N fased

se 2 E0
N 1 E0

N21d2 1 sGN y2d2

1 additional poles, (4)

whereGN ­
PM

a­1 G
a
N , and

Ga
N ­ 2p

X
k[a

X
n,m

k0N21jVkndnj0Nl

3 k0N jV p
kmdy

mj0N21ldsek 2 E0
N 1 E0

N21d . (5)

InsertingG,,r
nm into Eq. (2), one finds the multiprobe cur

rent formula

Ia ­
e
h

MX
b­1

Z
de

X
N

G
a
NG

b
N f fased 2 fbsedg

se 2 E0
N 1 E0

N21d2 1 sGN y2d2
.

(6)

The low-temperature transport through such a correla
many-body system weakly coupled to multiple leads th
© 1996 The American Physical Society
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exhibits resonances of the Breit-Wigner type [12], wh
the positions and intrinsic widths of the resonances
determined by themany-bodystates of the system. In pa
ticular, Eq. (5) implies that the partial widths of the co
ductance resonances are strongly suppressed for larN
due to the orthogonality catastrophe [13]. Equation
which expresses the current in terms of transmission pr
bilities, is a generalization of the multiterminal condu
tance formula for a noninteracting system derived
Büttiker [14] to the case of resonant tunneling through
interacting system.

In deriving Eq. (6), we have neglected the additio
poles in G,,r

nm sed, which is justified providedkBT ,
GN ø DEN andDm , DEN , whereDEN ­ minsE1

N 2

E0
N , E1

N21 2 E0
N21, E0

N11 2 E0
N 2 ma , ma 2 E0

N21 1

E0
N22d, E1

N being the energy of the lowest lying e
cited state of theN-electron system [15]. Equation (6
is thus appropriate to describe resonant tunne
through semiconductor nanostructures [1,2] or ultrasm
metallicysuperconducting systems [3,16] under conditio
of low temperature and bias, where transport is do
nated by asingle ground state to ground state transiti
j0N21l ! j0N l.

We next specialize to the three-terminal configurat
shown in Fig. 1(a). Transport occurs between the
(L) and right (R) reservoirs. The auxiliary reservoir (A)
serves as a voltage probe [17]. An ideal voltage pr
should have an infinite impedance, so we demand tha

FIG. 1. (a) Schematic diagram of a quantum dot in a thr
terminal configuration. (b) Equivalent circuit withCG ­ C1 1
C2 1 C3 andCGVG ­ C1V1 1 C2V2 1 C3V3.
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expectation value of the current flowing into reservoirA
be zero, which fixesmA via Eq. (6). EliminatingfAsed
from Eq. (6), one finds the current flowing from left t
right

I ­ 2
e
h

X
N

G
L
N G

R
N

G
L
N 1 G

R
N

3
Z GN f fLsed 2 fRsedg de

se 2 E0
N 1 E0

N21d2 1 sGNy2d2
. (7)

The total width of theN th resonance isGN ­ G
L
N 1

G
R
N 1 G

A
N , where the quantityGA

Nyh̄ may be interpreted
as theinelastic scattering ratedue to phase-breaking pro
cesses in the auxiliary reservoir. Such processes a
when an electron in the dot escapes into reservoirA and
is replaced by an electron from the reservoir, whose ph
is uncorrelated with that of the previous electron [12].
should be emphasized that both the position of the re
nanceE0

N 2 E0
N21 and, in principle, the resonance wid

GN depend on the external electrochemical potentials
gate voltages due to Coulomb interactions in the syst
This dependence must be determined from the exp
form of Hint in order to calculate theI-V characteristic.

Let us consider the simple example of a quantum
defined electrostatically in a 2D electron gas by seve
metallic gates, as indicated in Fig. 1(a), treating electr
electron interactions using a capacitive charging mo
[11], as indicated in Fig. 1(b). The Hamiltonian for th
interacting region, including the work done by the exter
voltage sources, is

Hint ­
X
n

´ndy
n dn 1 Q2y2CS 1 Q

X
i

CiViyCS , (8)

where ´n are the single-particle energies of the (quas
bound states in the confining potential of the quantum d
Q ­ 2e

P
n dy

n dn is the charge operator for the quantu
dot, CS ­

P
i Ci, and the voltages in the reservoirs a

defined byma ­ eF 2 eVa , whereeF is the equilibrium
electrochemical potential. The spin degeneracy of
system is assumed to be broken, e.g., by an exte
magnetic field [18]. From Eq. (8), one finds the resona
positions

E0
N 2 E0

N21 ­ ´N 1 e2sN 2 1y2dyCS 2 e
X

i

CiViyCS

(9)
and widths

Ga
N ­ 2p

X
k[a

jVkN j2dsek 2 E0
N 1 E0

N21d . (10)

For this simple charging model, which neglects intrad
correlations, the many-body corrections to the resona
widths implicit in Eq. (5) are absent. The matrix elemen
VkN depend on the external voltages which define
point contacts 1 and 3. However, their variation in the
cinity of a single resonance may be neglected, soG

a
N will

be taken to be independent ofVi. Inserting these expres
sions into Eq. (7), and performing the energy integral
2771
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T ­ 0, one finds theI-V characteristic for theNth resonance

IyImax ­
1
p

∑
tan21

µ
De 1 e

P
i CiViRyCS

GN y2

∂
2 tan21

µ
De 1 e

P
i CiViLyCS

GN y2

∂∏
, (11)

where Imax ­ seyh̄dGL
N G

R
N ysGL

N 1 G
R
N d, De ­ eF 2 f´N 1 e2sN 2 1y2dyCSg, and Vij ; Vi 2 Vj . Similarly, the

mean charge on the quantum dot atT ­ 0 in the vicinity of theN th resonance is found to be [19]

kQl ­ 2e

∑
N 2

1
2

1
G

R
Nyp

G
L
N 1 G

R
N

tan21

µ
De 1 e

P
i CiViRyCS

GN y2

∂
1

G
L
Nyp

G
L
N 1 G

R
N

tan21

µ
De 1 e

P
i CiViLyCS

GN y2

∂∏
.

(12)
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The voltage in probeA is determined by the constrain
IA ­ 0, and satisfiesX

i

CisVA 2 VidyCS

­ sGN y2ed tanfpskQlye 1 N 2 1y2dg 1 Deye .
(13)

For CA fi 0, both I and kQl depend onVA, and the non-
linear conductance must be determined from a solutio
o
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the coupled Eqs. (11)–(13). Equations (11) and (12)
functions of voltage differences only, and are thus ga
invariant, i.e., invariant under a global shift of the ext
nal electric potentials. Evidently, the multiprobe curr
given by Eq. (6) is quite generally gauge invariant p
vided the long-range Coulomb interaction is included
Hint, so thatE0

N transforms asE0
N ! E0

N 2 eNdV under
a global shiftVi ! Vi 1 dV .

From Eq. (11), one finds the nonlinear conductance
biasV ­ VL 2 VR ,
≠I
≠V

­
e2

h
G

L
N G

R
N

G
L
N 1 G

R
N

X
s­61

GN fs1 1 shdy2 1 ssCAyCSd≠VA0y≠V g
fDe 1 ss 1 hdeVy2 1 esCAVA0 1 QGdyCSg2 1 sGNy2d2

, (14)
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rgy
where h ­ sCL 2 CRdyCS, QG ­ CGsVG 2 V0d, and
VA0 ­ VA 2 V0, with V0 ; sVL 1 VRdy2 (CG and VG

are defined in the caption of Fig. 1). As a function
the polarization chargeQG induced by the external gate
the linear response conductance exhibits Lorentzian p
with spacingDQG ­ e 1 CSD´Nye, whereD´N is the
single-particle level spacing in the dot, leading to p
odic Coulomb blockade oscillations in the small capa
tance limit, as discussed in Ref. [11]. While the lin
response conductance depends only onQG , Ga , and the
total capacitanceCS, the nonlinear conductance (14) d
pends explicitly on the asymmetryh in the capacitance
of the tunnel barriers. Such an asymmetry leads to a
in the resonance for large bias, as shown in Fig. 2. M
significantly, theI-V characteristic is in generalasymmet
ric for nonzeroh, leading to rectification. The differen
tial conductance typically exhibits a doublet structure (
Fig. 3), with peaks when the Fermi levels in the right a
left reservoirs are aligned with the resonance; forCA ­ 0,
the peaks occur atV ­ 62sDeye 1 QGyCSdys1 6 hd
and the ratio of the conductance at the two peak
s1 2 hdys1 1 hd. Thus, to treat the nonlinear condu
tance, it is not sufficient to characterize the electr
electron interactions simply by the charging energyU ­
e2yCS and the polarization chargeQG; the full capaci-
tance matrix must be used.

Equation (12) predicts that the jump [20] in the me
charge on the quantum dot as a function ofQG is split
into two jumps at large bias, of widthCSGye and heights
eGLy2sGL 1 GRd and eGRy2sGL 1 GRd, separated b
DQG ­ sCS 2 CAdV , which arise when the resona
f
,
aks

i-
i-
r

-

ift
re

e
d

is
-
n-

n

t

energy crosses the Fermi levels in the left and ri
reservoirs. This behavior is illustrated by the dash
curve in Fig. 2.

Let us next consider the effect of capacitive coupl
to the voltage probe. Because the voltage in the pr
adjusts so as to prevent charge accumulation in rese
A whatever the dc bias, a capacitive coupling between
probe and the dot tends to suppress charge accumul

FIG. 2. Resonant current in units ofImax ­ seyh̄dGLGRy
sGL 1 GRd (solid curves) and mean chargekQl (dashed curves
for a quantum dot withh ­ 21y2, GRyGL ­ 2, De ­ 0, and
CAyCS ­ 0.1 as a function of the polarization chargeQG ­
CGfVG 2 sVL 1 VRdy2g; the biasV ­ VL 2 VR ­ Gy2e and
8Gye (curves marked with arrows). For large bias, the ju
in the mean charge on the quantum dot as a function ofQG
is split into two jumps, which arise when the resonant ene
crosses the Fermi levels in the left and right reservoirs.
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FIG. 3. Differential conductance≠Iy≠V in units of s1 2
GAyGde2yh for a quantum dot withh ­ 0, GLyGR ­ 3,
and DeyG ­ 1 (QG ­ 0) for CAyCS ­ 0 (solid curve); 1y4
(dotted curve); 1y2 (short dashed curve); 3y4 (long dashed
curve); 1 (dash-dotted curve). Note that the linear respo
conductance is independent ofCA.

in the dot, leading to a mean dot chargekQl ­ 2efN 2

1y2 1 s1ypd tan21s2DeyGN dg which is independentof
the external voltages in the limitCA ! CS. Such a
suppression of charge accumulation—over and above
Coulomb blockade—leads to a dramatic change in
nonlinear conductance, as shown in Fig. 3. In additi
for CA fi 0, theI-V characteristic is generally asymmetr
even if h ­ 0, provided GL fi GR (see Fig. 3). Thus
a seemingly noninvasive voltage measurement involv
negligible dephasingGAyh̄ can significantly modify the
nonlinearI-V characteristic due to electrostatic effects.

The theoretical results presented above are consi
with several recent experiments on coherent reso
tunneling through quantum dots [1,2]. The therma
broadened Lorentzian conductance peaks predicted
Eq. (7) and the shift of the peak positions at finite b
for h fi 0 are consistent with the experimental results
Foxmanet al. [1]. Furthermore, the fact that the tunnelin
current can be expressed in terms of the transmis
probabilities through the many-body system [Eq. (6
just as in the noninteracting case [14], is consist
with the intriguing observation of coherent modulati
of the Coulomb blockade peak heights as a funct
of gate voltage and magnetic field [2], which sugges
the applicability of a Landauer-type formula to reson
tunneling through an interacting system.

In conclusion, a multiterminal conductance formula d
scribing resonant tunneling through an interacting me
scopic system was derived and used to investigate
nonlinear conductance of a quantum dot. It was sho
that the inclusion of the Coulomb interaction between
quantum dot and the external reservoirs and gates lea
a gauge-invariantI-V characteristic which depends sen
tively on the full capacitance matrix.
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