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Nonlinear Conductance in Resonant Tunneling
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A multiterminal conductance formula describing resonant tunneling through an interacting mesoscopic
system is derived and used to investigate the nonlinear conductance of a quantum dot. An explicit
gauge-invariant expression for tiieV characteristic which depends sensitively on the full capacitance
matrix is obtained. A voltage probe is found to have a dramatic effect on the nonlinear conductance.
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The problem of coherent transport through an interacting _ _ € f ImTr{Te <(e) + 2 r
mesoscopic system coupled to macroscopic electron reser- h de ()67 (e) fal)GT (O]
voirs is of considerable current interest [1-10]. Recently, (2)

substantial progress has been made in treating transpor o o . B . .

through correlated systems using nonequilibrium Green'$/€r€ Liin(€) = 27 3 eq VinVimd(€ — &) Is a matrix

functions [5—7] and bosonization [8,9]. However BUttikercharacterlzmg th(i tunnel barrier connecting reservoir
Ll . L ,r .

has emphasized [10] that a gauge-invariant description the system,G,,/(¢) are Fourier transforms of the

. ; 's functiongG= () = id! (0)d, (1)) and G’ (1) =
nonlinear transport requires a proper treatment of the Iong;r,eerls v m\~on i
range Coulomb interaction which explicitly includes the i6(1) (1. (1), d,,(0)}), which describe propagation within

external gates and reservoirs. In this Letter, we deriveethe mesoscopic system in the presence of coupling to the

— - -1
Breit-Wigner type formula for the resonant conductanc eads_, andfa(e) {exr[(e_ Ha)/kpT] + 1} 1S the
through an arbitrary interacting system with a nondegen: ermi funct[on for reservou. If the tunne_llng barriers to
erate ground state, coupled weakly via tunnel barriers tE)he reservoirs are sufficiently large, and if the temperature

several electron reservoirs, and use this formula to invest _hnd tf['r‘?s are smta}[lrl1 comm;‘ed to tthe enﬁlr%y OJ a{n expﬂzztlgn,
gate nonlinear transport through a quantum dot, includin en the current througn [he System will be determined by

inelastic processes explicitly. It is shown that the inclu- ranS|t|ons|ON_1)_—_> !ON> between nondegenerate grounq
states. In the vicinity of such a resonance, the Green’s

sion of long-range Coulomb interactions via a capacitivef . be sh o h the f
charging model [11] leads to a gauge-invariasi char- unctions can be shown to have the form

acteristic which depends explicitly on the full capacitance .  (On—1ld,l0y) Oxldt10y—1)
matrix. Gon(€) = ) 0 :
An arbitrary interacting mesoscopic conductor coupled € EI_V_+ Ey-1 + iln/2
to M macroscopic electron reservoirs is described by the + additional poles 3)
Hamiltonian G= () — i{On—11d,10n) Onldf|On—1) > o TR fale€)
M " (€ — Ex + Ex—1)* + (T /27
H = Hn(d}.d}) + > Y ecle + additional poles 4)
a=lk€a
M whereTy = 7 T'¢ and
eSS S W, + He), @ W= e T
alkEan T8 =27 > > On-1|Vind,lOy)

where{d!} creates a complete set of single-particle states Kea n’;n ¢ 0 0

in the mesoscopic systena,__ creates an electron in X AN Vignd Oy -1)8(ex = Ey + Ey—y). (5)

statek of reservoira, andHy, is a polynomial in{d,d,}  InsertingG>’ into Eq. (2), one finds the multiprobe cur-

which commutes with the electron numbdér= Y, dfd,.  rent formula

We denote the ground state &f,, for eachN by |0y) u -

and the ground state energy . We assumeEy to P S f e INIn[ fa(e) — fple)]

be nondegenerate, as is generically the case in a nonzer§ & = (€ — EN + EN_1)2 + (Ty/2)?"

magnetic field. (6)
The expectation value of the current flowing into reser-

voir & can be expressed using the formalism of Meir andThe low-temperature transport through such a correlated

Wingreen as [5] many-body system weakly coupled to multiple leads thus
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exhibits resonances of the Breit-Wigner type [12], whereexpectation value of the current flowing into reservair
the positions and intrinsic widths of the resonances arbe zero, which fixesu, via Eq. (6). Eliminatingf(e)
determined by thenany-bodystates of the system. Inpar- from Eq. (6), one finds the current flowing from left to
ticular, Eq. (5) implies that the partial widths of the con- right

ductance resonances are strongly suppressed for Mrge e rsrk

due to the orthogonality catastrophe [13]. Equation (6), = — ZZ L . TR

which expresses the current in terms of transmission proba-

bilities, is a generalization of the multiterminal conduc- Iyl fr(e) — fr(e)]lde

tance formula for a noninteracting system derived by X (€ — EY + ES_)2 + (Ty/2)?2" (7)

Biittiker [14] to the case of resonant tunneling through a
interacting system.

In deriving Eq. (6), we have neglected the additional
poles in G, (e), which is justified providedksT,

r]l'he total width of theNth resonance id'y = l“ﬁ, +
IR + T4, where the quantitfy /i may be interpreted
as theinelastic scattering ratelue to phase-breaking pro-
et cesses in the auxiliary reservoir. Such processes arise
F’(}’ < AEy arz)dA,u 0< AEy, (\)NhereAEN - man(EN ~ when an electron in the dot escapes into resemoand
EIOV’EN‘l B En-—1.Enei = EN = frasfta = Eyo1 + g replaced by an electron from the reservoir, whose phase
Ey-»), Ey being the energy of the lowest lying ex- s ncorrelated with that of the previous electron [12]. It
.C'ted state of the’Y-eIectron system [15]. Equation (6,) should be emphasized that both the position of the reso-
is thus appropriate to describe resonant tu”ne“n%anceER, — EY_, and, in principle, the resonance width
through semiconductor nanostructures [1,2] or uItrasmaIfN depend on the ext’ernal electro’chemical potentials and
metallic/superconducting systems [3,16] under cqndition_sgate voltages due to Coulomb interactions in the system.
of low temperature and bias, where transport is d.(?m"This dependence must be determined from the explicit
nated by asingle ground state to ground state transition form of H;, in order to calculate thé-V characteristic.
10y -1) = 10). - . ) . Let us consider the simple example of a quantum dot
We next _speC|aI|ze to the three-terminal Conf'gurat'ondefined electrostatically in a 2D electron gas by several
shown n Fig. 1(a). Tra_msport oceurs between t_he Ieﬁ'netallic gates, as indicated in Fig. 1(a), treating electron-
(L) and right ) reservoirs. The auxn_lary reservoin) electron interactions using a capacitive charging model
SErves as a voIFage_ prpbe [17]. An ideal voltage prob’%l], as indicated in Fig. 1(b). The Hamiltonian for the
should have an infinite impedance, so we demand that t teracting region, including the work done by the external
voltage sources, is

(a) Hiy = and;dn + Q2/2C2 + QZCiVi/CEs (8)

where g, are the single-particle energies of the (quasi)-
W bound states in the confining potential of the quantum dot,

Q = —eY,d!d, is the charge operator for the quantum
dot, Csy = >, C;, and the voltages in the reservoirs are
defined byu, = e — eV,, whereey is the equilibrium
electrochemical potential. The spin degeneracy of the
1 3 system is assumed to be broken, e.g., by an external

magnetic field [18]. From Eq. (8), one finds the resonance
Ha positions

EY — Ey_ | = ey + (N — 1/2)/Cs — e > CiVi/Cs
9)

and widths

Ie =27 > |Vinl*6(ex — EY + EY_)).  (10)
k€«

For this simple charging model, which neglects intradot
correlations, the many-body corrections to the resonance
Cy== widths implicit in Eq. (5) are absent. The matrix elements
° Vin depend on the external voltages which define the

VA point contacts 1 and 3. However, their variation in the vi-
FIG. 1. (a) Schematic diagram of a quantum dot in a three-Cinity of a Singlt_a resonance may be ngglectedl“,%cwill
terminal configuration. (b) Equivalent circuit with; = ¢, + b€ taken to be independent Bf. Inserting these expres-
C> + Gz andCgVg = C1Vy + CVy + C3Vs. sions into Eq. (7), and performing the energy integral at
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T = 0, one finds thd-V characteristic for theVth resonance
1 _ AE + eZ‘CiViR/CE> _ Ae + eZ-CiV,-L/Cg
e e
/ max T |: an FN/2 an FN/2
where Ina, = (e/R)TNTR/(Th + TX), Ae = e — [eny + ¢*(N — 1/2)/Cs], and V;; = V; — V,. Similarly, the
mean charge on the quantum doat= 0 in the vicinity of theNth resonance is found to be [19]
i + FIIS//W t ,1<A6 + ezi CiViR/CE> + F[%//’?T t ,1<A6 + ezi CiViL/C2>i|
2 TrE+ 1% I'y/2 rs + R I'y/2 '

(11)

() = —e[N -
(12)

The voltage in probel is determined by the constraint the coupled Egs. (11)—(13). Equations (11) and (12) are

I, = 0, and satisfies functions of voltage differences only, and are thus gauge
invariant, i.e., invariant under a global shift of the exter-
Zci(VA - Vi)/Cs nal electric potentials. Evidently, the multiprobe current
i

given by Eqg. (6) is quite generally gauge invariant pro-
= ([n/2e)tar{m((Q)/e + N — 1/2)]+ A€/e.  vided the long-range Coulomb interaction is included in
(13)  Hiy, SO thatEy transforms agy — Ey — eNSV under

For C4 # 0, bothI and(Q) depend orV,, and the non- & global shiftV; — V; + §V.

linear conductance must be determined from a solution of . Frgm Eg. (11%/’ one finds the nonlinear conductance for
| 1as = VL — VR,

e
oV h Tk + IF 5 [Ae + (o + meV/2 + e(CaVao + Qa)/CsP + (Ty/2)°

al 2 F,LVF}SR Z Tn[(1 + om)/2 + 0(Ca/Cs)dVao/IV] (14)

where n = (C;, — Cr)/Cs, Qg = Cc(Vg — Vy), and | energy crosses the Fermi levels in the left and right
Vao = Va4 — Vo, with Vo = (Vp + Vg)/2 (Cg and Vg reservoirs. This behavior is illustrated by the dashed
are defined in the caption of Fig. 1). As a function of curve in Fig. 2.

the polarization charg@. induced by the external gates, Let us next consider the effect of capacitive coupling
the linear response conductance exhibits Lorentzian peaks the voltage probe. Because the voltage in the probe
with spacingAQg = ¢ + CsAey/e, whereAey is the  adjusts so as to prevent charge accumulation in reservoir
single-particle level spacing in the dot, leading to peri-A whatever the dc bias, a capacitive coupling between the
odic Coulomb blockade oscillations in the small capaci-probe and the dot tends to suppress charge accumulation
tance limit, as discussed in Ref. [11]. While the linear
response conductance depends only@n I'*, and the
total capacitanc&’s, the nonlinear conductance (14) de-
pends explicitly on the asymmetny in the capacitances

of the tunnel barriers. Such an asymmetry leads to a shift
in the resonance for large bias, as shown in Fig. 2. More
significantly, thel-V characteristic is in generasymmet-

ric for nonzeron, leading to rectification. The differen-
tial conductance typically exhibits a doublet structure (see
Fig. 3), with peaks when the Fermi levels in the right and
left reservoirs are aligned with the resonance;@gr= 0,

the peaks occur a¥ = *2(Ae/e + Qg/Cs)/(1 £ 1)

I/Imax
—(Q)/e

and the ratio of the conductance at the two peaks is 0_5 0 5 10
(1 = m)/(1 + n). Thus, to treat the nonlinear conduc-
tance, it is not sufficient to characterize the electron- ch/FCz

electron interactions simply by the charging enetdy= £ 2. Resonant current in units O, = (¢/R)TETR)

¢?/Cs and the polarization charg@c; the full capaci- (1% + ) (solid curves) and mean char@@) (dashed curves)
tance matrix must be used. for a quantum dot withy = —1/2, TR /Tt =2, Ae = 0, and

Equation (12) predicts that the jump [20] in the meanCa/Cs = 0.1 as a function of the polarization chargg; =
charge on the quantum dot as a function@f is split ~ CalVe — (Vi + Vi)/2]; the biasV =V, — Vg = I'/2¢ and
into two jumps at large bias, of widtsT'/e and heights 8T"/e (curves marked with arrows). For large bias, the jump
n 3 JL P R g Ron L ER g in the mean charge on the quantum dot as a functio® ef
el>/2('* + T'®) and eI'™*/2(I'" + T'"), separated by s split into two jumps, which arise when the resonant energy
AQg = (Cy — C4)V, which arise when the resonant crosses the Fermi levels in the left and right reservoirs.
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