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Simple model for decay of superdeformed nuclei
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Recent theoretical investigations of the decay mechanism out of a superdeformed nuclear band have yielded
qualitatively different results, depending on the relative values of the relevant decay widths. We present a
simple two-level model for the dynamics of the tunneling between the superdeformed and normal-deformed
bands, which treats decay and tunneling processes on an equal footing. The previous theoretical results are
shown to correspond to coherent and incoherent limits of the full tunneling dynamics. Our model accounts for
experimental data in both th&~ 150 mass region, where the tunneling dynamics are coherent, and A the
~190 mass region, where the tunneling dynamics are incoh¢ &656-28189)50911-4

PACS numbds): 21.60—n, 21.10.Re, 27.76.q, 27.80+w

One of the most interesting recent discoveries in nuclearprevious investigations of the decay-out process can be ob-
structure physics is the existence of superdeformation fotained in certain limits, depending on the relative sizes of
nuclei in the massA~150 andA~190 regions. So far, a these widths. It will also be shown that the appropriate ex-
consistent theory regarding the decay out of a superdeformeatession for the spreading width is not Edy), but
(SD) rotational band into a normal-deform@dD) band has
not been achieved. Most of the early wdrk—6] on this
problem attributed the decay-out process to a mixing of the
SD states with ND states of equal spin. Decay out of the SD
band sets in at a spih,, for which penetration through the —
barrier between the SD minimum and the ND minimum iswherel'=(I's+1I'y)/2, V is the matrix element connecting
competitive with the E2 decay within the SD band. A statis-the SD state of interest with the single ND state with which
tical model was usefR,3] to describe the ND states, and the it mixes most strongly, and is the energy difference of
decay out of the SD band was determined as a function dhese two states. It will be shown that @) is indeed the
the decay widthd'g and I'y in the SD and ND potential correct mean value df! over a statistical ensemble of nuclei

wells, respectively, the spreadirfgr tunneling width T'* i the limit V<T, in agreement with Ref7]. However, the

through the barrier, and the average spadiigof the ND  flyctuations inI'! are typically much larger than its mean,

states. Under the assumption that the ND states form a condicating that Eq(2) must be used to describe the decay out

tinuum on the scale of the other energies in the problem, thgf a particular superdeformed state.

spreading width was found, using Fermi’s golden rule, to be \otivated by the experimental fag8] that 'y, Ts<Dy

[5] in the A~190 region, we consider an effective two-level

system consisting of the superdeformed st8tand the

Fl:277<V2>/DNv oY) normal-deformed statBl to which it couples most strongly.

_ ) _ The Hamiltonian of the system is
where(V?) is the mean square of the coupling matrix ele-

mentsV,; connecting the SD and ND statd3! measures H=Hy+Hp, ©)]
the strength of the coupling between the SD and ND states.
In Refs.[2,3], it was assumed thdty<I'g and thatl'!//D, ~ whereH describes the electromagnetic decay proceEges
~1, i.e., that the coupling between the SD and ND states iandI's within the ND and SD bands, respectively, and
relatively strong. + T t +
Quite recently, a different approach to this problem has Ho=25CsCst enCrCnT V(CsCnt C\Cs) (4)
been reportef7]. In this approach, the reduction facteg of ) . ] ) )
the intraband transition intensity is calculated directly as &escribes the effective two-level system, including tunneling
function of the spreading width ' and of the intraband E2 through the barrier separating the SD and ND states. tlere
width T's. Their final result forF s is shown to be indepen- andcy are creation operators for the superdeformed sate
dent of the statistical E1 decay widthg, of the ND states, 0f energyeg, and the normal-deformed stalté of energy
provided thafl'y>T"!,I's. Since the publication of the later &y, respectively. Without loss of generality, the tunneling
result, it has been difficult to reconcile the predictions ofmatrix elemen¥ is chosen positive via an appropriate choice
these two calculations, because their final results do not dedf the relative phase of the stat8sandN.
pend upon the same parameters. In order to include both the coherent “Rabi oscillations”
The purpose of the present Rapid Communication is tglue toV and the irreversible decays andI'y, it is useful
formulate a simple two-level model for this problem, so as toto consider the retarded Green’s function
study in detail the dependence of the decay-out process on
I's, Iy, andT!. It will be shown that the results of both Gij()=—i0(t)({ci(t),c[(0)}) (5

%

MN=——,
A?+T?

2
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and its Fourier transform

Gi(E)= J:dtGij(t)eiEt. (6)

The Green’s function of the tunneling Hamiltonigk, satis-
fies
Gy H(E)=1(E+i0")—Hy, 7)

wherel is the unit matrix. In thdS),|N) basis, one has
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The tunneling dynamics are particularly interesting when
the energy differencA=0. There are then two qualitatively
different dynamical regimes, depending on the relative size
of the tunneling matrix elemeM and the difference in decay
ratesI"'. For 2v>|I'’|, the tunneling dynamics areher-
ent and one finds

- wot T r wot
Pi(t)=e | co?— + — sinwot +— Sif—- |,
2 " wo W22

2

. E—esti0" -V PN(t)=%e‘“sin2w7°t, (14
G By Esgriot) @ o
L . where the Rabi frequenay is
The full Green’s function, including decay processes, may be
calculated from Dyson’s equation, wo= |4v2_1"72|1/2_ (15)

G =G, -3, ©) For 2V<|I'’|, on the other hand, the tunneling dynamics are
whereX is the self-energy matrix describing the decay pro_mcoheren,t and
cessed’s andl'y induced byHp . The simplest ansatz fa , )2
. Ty wot F ) ) (l)ot
is [7] P(t)=e | cosf — + — sinhwgt +— sinkf — |,
2 (O] w% 2
(233 ESN) (—IFSIZ 0 ) (10)
py py 0 —ir\/2)’ 2 _
NS TN N P,\,(t)z%e*Ft sinhz%ot. (16)
Using Eqgs.(8) and(10), one can solve Dyson’s equation to Wo
obtain the full retarded Green’s function of the two-level ) )
system, ForI"'=0 andA#0, the tunneling dynamics amherent
given by Eq.(14), with wy— (4V?+A?)*Y2 ForI''#0 and
Gss Gsy A+#0, the tunneling dynamics have both coherent and inco-
E(G G ) herent componentke.f. Eq. (12)], the coherent component
NS NN being suppressed for lard¥ and/or largeA.
=[(E—egtil'¢2)(E—en+il'\/2)—V?] 1 The dynamics of the system are similar to that of the
two-level system with dissipation, investigated by Leggett
E—entil'\/2 \Y et al. [9]; the principal difference is that we consider a two-
X \Y; E—egtilg2)” 1D jevel system in which the total number of particles is itself

time dependent. The physical origin of the imaginary self-

One can obtain fron® all information about the dynamics of energy2. is virtual transitions of the nucleus to lower-lying
the system and the branching ratios of the decay processestates and back again, which alter the state of the electromag-
Let us first study the dynamics of the coupled SD-ND netic environment. This is analogous to the coupling of the
system. Assuming the nucleus starts out at time zero in thivo-level system to a bath of bosonic excitations considered
superdeformed staf&), the probability that the nucleus is in in Ref.[9]. If the environment couples with equal strength to

state|S) at a later timet is Pg(t) =|Gg4t)|?. The probability
that the nucleus is in the normal stafd) at timet is
Pn(t)=|Gns(t)]?. Pg(t) and Py(t) may be calculated
straightforwardly from the Fourier transform of E¢L1).
The general result foPy(t) is

2

Pn(D) = We‘ﬂ(coshwit—cosmt), (12
w
where
w=w,+iw;=Va4V*+(A—il'")? (13

A=ey—eg, ['=(I'y—Tg)/2, andl was defined after Eq.
(2). The general expression férg(t) is rather lengthy.

the statesSandN, i.e., if 's=I"y=1I", the Green’s function
factorizes quite generalljl0]; G(t)=e ""2Gy(t), and the
nucleus undergoes Rabi oscillations with frequeney
= (4V%+ A?)Y2 petween the statésandN. The nucleus is in
a coherent superposition of states, which decays at an overall

rate I' to lower-lying states. However, if the environment
couples with different strengths to the stagandN, i.e., if
I'"#0, coherent tunneling betweediand N is suppressed
since the environment “measures” which state the system is
in. For A=0 and 0<|T'’|<2V, the dynamics described by
Eq. (14) are qualitatively similar to the cadé’ =0, but the
Rabi frequency is reduced to the value given in Bdp). If

the difference in coupling exceeds the critical valug|

>2V for A=0, the coherent superposition &and N is
destroyed altogether, and the dynamics are overdamped. As
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in the model of Ref[9], there are both coherent and inco- r!
herent components of the dynamics when bbth=0 and lim Fy= , (23
A#0. In/Tg—o F3+Fl

Let us now turn our attention to the decay branching ratio, o _ . _
which is the experimentally measurable quantity. When thevherel'! is given by Eq(2). Equation(23) is identical to the

nucleus is in the stat§, it decays at a raté's to a lower
superdeformed state, and when it is in stdtd# decays at a

principal result of Weidenmiler, von Brentano, and Barrett
[7], although our expression fdt' differs from that of Ref.

rateI"y to a lower-energy state in the normal-deformed band[7]. Note that, in contrast to the argument of REf], no

Thus, the time-dependent rates to decay inSla@dN chan-
nels are
To(t)=TsPs(t), Ty(t)=TyPy(1). (17)

The fractionFy of nuclei that decay vi&1 processes in the
normal-deformed band is jufil]

f:dth(t)

FN: :FNfowdtPN(t) (18)

f:dt['meﬁs(t)]

This integral may be evaluated to obtain the central result of

this paper,

(1+T /T g)V?
NT S T2 2 '
A2+ T2(1+4V2IT\[)

(19

The fraction of nuclei decaying viB2 processes within the
superdeformed band Bs=1—F. In Ref.[7], Fg was de-
noted byF.

Let us now consider some limits of E(L9). In the limit

of very strong coupling of the state5 and N,V>T, one
finds

Fy(Cs+Ty)
(T+ )2+ T N(AIV)Z

N=

(20

lim F
VIT -
This is equivalent to the result of Vigezzi, Broglia, and Dos

sing [2,3] for the case where only a single SD state and
single ND state mix:

lc,l?(1—]c,/?) Ty
(1—|c, /AT \+]c,|Ts

R 3

o==*

: (21)

wherec. =(*|S) are the mixing amplitudes of the eigen-
stateg =) of Hy with |S). From Eq.(4) we have

L P=[1+(x= PP+ 1)%] 7,

with x=A/2V. Inserting Eq.(22) into Eq. (21), one indeed
recovers Eq(20). Thus the result21) of Refs.[2,3] is seen

to be a limiting case fov/I'—o (i.e., for fully coherent
tunneling of our general result, Eq19).

Another limit was considered in Ref7], namely I'
>T'g,I'L. In this limit, the tunneling dynamics aiiacoher-
ent The assumptiol’ s<I"y is motivated by the fact thdtg
is an E2 decay andl'y is an E1 decay. In the limitl'y
>I'g, Eq. (19 simplifies to

(22

assumption has been made about the relative sixeanfdI”
in deriving Eq.(23) from Eq.(19). However, the interpreta-
tion of I'' as atunneling rateis only justified whenl'!/T’
<1; for larger values 0¥/, the tunneling dynamics described
by Eqg.(12) are more complex, though the integrated rate still
obeys Eq(23), providedl'\>T's.

Equation(2) for I'! is also the expression one would ob-
tain from a correct application of Fermi’s golden rule in the

limit V<T<Dy:

= 277sz dEps(E)pn(E),

(24)

where the lifetime-broadened densities of states of the SD
and ND levels are

(E)= I'y2m
P (E—eg?+T24’

T2

pu(E)=——

(E—eyn)?+T2/4

Evaluating the integral in Eq24), one obtains expression
(2). The level-spacindy in the ND band is irrelevant i¥/
<Dy, sinceV only mixes the stat& and the single stat®
which is closest to it in energy in that case, as we have
assumed.

The branching ratiq19) depends strongly on the energy

JlifferenceA =&y —eg, which in turn depends sensitively on

the microscopic Hamiltonian of the particular nucleus under
investigation. In order to eliminate this parameter depen-
dence, one practice that is employed is to calculate the aver-
age ofFy over a statistical Gaussian orthogonal ensemble of
similar nuclei. In the limit of incoherent tunnelingy
<I's,I'y, EQ. (19 may be integrated ovek to obtain

(T

s’

dA

F= | 5Fua)- @)

where(T'!) is given by the right-hand side of Eql), in
agreement with Ref.7]. Howeuver, it is clear from Eq(19)
that Fy typically deviates significantly from its mean value.
For instance, the mean squarerqf is much larger than the

square of Fy) whenDy>T:

(FE) _ DV
(Fa)? 2T (V22

(26)
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TABLE |. Widths and level spacings for a number of nuclei, the theory of Refs[1-6]. Our general resultl9) is consis-
deduced from the data of Ref,8,12, following the analysis of tent with the data in both thA~ 150 andA~ 190 mass re-
Ref.[2] for A~ 150 and of Ref[7] for A~190. The spin values of gions and unifies these two complementary theoretical ap-
the decaying states are given in parentheses. proaches.

A recent papef13] shows that the&s—N tunneling rate
Nucleus Ty (meV) Dy (eV) TI's (meV) I (meV) may be enhanced by several orders of magnitude if the ND
states are chaotic at the moment of the decay out. These

1

1223’(;2) 18‘?8 3_18 :lis ggg_gggg results are not inconsistent with our two-level model, but

1 y(24) R - ' B would simply imply an enhancement of the tunneling matrix
Hg(12) 10.3 34 0.116 0.018  glementV.

%2Hg(10) 10.3 30 0.054 0.544 In conclusion, we have shown that a simple two-level

19%44g(12) 18.1 92 0.144 0.097  model, which treats decay and tunneling processes on an

19Hg(10) 18.4 79 =0.047 =0.89 equal footing, can explain the apparently disparate previous

194pp(10) 1.6 1699 0.066 0.011 theoretical results, i.e., Refgl—6] versus Ref[7], for the

194pp(8) 1.7 1549 0.028 0.009 decay out of a superdeformed band. These previous results

are shown to correspond to the coherent and incoherent lim-
its, respectively, of the tunneling dynamics, and are special
cases of our general result, E4.9). We remark that it is

§traightforward to extend our method to treat an SD state

Thus, it would be preferable to compare experimental result
directly with Eq.(19), rather than with its ensemble average.coup|ed to an arbitrary number of ND states.

In Table I, we show some experimental data for nuclei in Note added in proofin a recent papefl4], Gu and
the A~150 andA~ 190 mass regions. So far, little data is \yejgennilier have demonstrated that the result of &t
available in tqg‘%w 150 region, with estimates onl2] for 45 4 Jarge variance in the~190 mass region, consistent
the widths for™>Dy. From the numbers given in Table I, we \ith our Eq.(26) for the ensemble average. Nonetheless, we
observe that the nuclei in th&~190 mass region have p5ue shown that foA~190. our Eq.(23) holds for each
I'!,T's<I'y. The dynamics o6—N tunneling in these nu- yomper of the ensemble. The large variancé gfshould,

clei are thus incoherent, and the appropriate branching ratig, ;s pe attributed to the fluctuationsIof over the ensemble
is given by Eq(23), in agreement with Ref7]. On the other [see Eq(2)].

hand, for Dy, I''>T'g,T'y, indicating coherentS=N

tunneling. The measured valug,12] of Fs=0.51 for B.R.B. thanks R. Kraken for helpful discussions and ac-
152Dy (26) is consistent with E¢(20), using the values df s knowledges partial support from NSF Grant No.
andI'y in Table | and assuming/A~1, in accordance with PHY9605192.
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