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Metal nanowires exhibit a number of interesting properties: their electrical conductance is quan-
tized, their shot-noise is suppressed by the Pauli principle, and they are remarkably strong and
stable. We show that many of these properties can be understood quantitatively using a nanoscale
generalization of the free-electron model. Possible technological applications of nanowires are also
discussed.

Introduction Metal nanowires represent nature’s ultimate limit of conductors down to
a single atom in thickness. In the past eight years, experimental research on metal
nanowires has burgeoned [1–13]. The simplest model of a metal is the free-electron
model [14], which already describes many bulk properties of simple monovalent metals
semiquantitatively. In this article, we discuss our generalization of the free-electron
model to describe nanoscale conductors [15–22].
A remarkable feature of metal nanowires is the fact that they are stable at all. Figure 1

shows electron micrographs by Kondo and Takayanagi [5] illustrating the formation of
a gold nanowire. Under electron beam irradiation, the wire becomes ever thinner, until
it is but four atoms in diameter. Almost all of the atoms are at the surface, with small
coordination numbers. The surface energy of such a structure is enormous, yet it is
observed to form spontaneously, and to persist almost indefinitely. Even wires one
atom thick are found to be remarkably stable [8, 9, 13]. Naively, such structures might
be expected to break apart into clusters due to surface tension [23], but we find that
electron-shell effects can stabilize arbitrarily long nanowires [22].
A crucial clue to understanding the physics of metal nanowires is the observed corre-

lation between their electrical and mechanical properties. In a seminal experiment car-
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Fig. 1. Transmission electron micrographs
showing the formation of a gold nanowire
[5] (image courtesy of Y. Kondo): a) an im-
age of Au(001) film with closely spaced na-
noholes, the initial stage of the nanowire, b)
a nanowire four atoms in diameter, resulting
from further electron-beam irradiation



ried out in 1995, Rubio et al. [3] simultaneously measured the electrical conductance
and cohesive force of an atomic-scale gold wire as it is formed and ruptured (see Fig. 2,
left panel). They observed steps of order G0 ¼ 2e2=h in the conductance, which were
synchronized with a sawtooth structure with an amplitude of order 1 nN in the force.
Similar results were obtained independently by Stalder and Dürig [4]. Note that the
tensile strength of the nanowire in the final stages before rupture exceeds that of
macroscopic gold by a factor of 20, and is of the same order of magnitude as the theo-
retical value in the absence of dislocations [3]. This is consistent with the recent finding
of Rodrigues et al. [13] that such nanowires are, in fact, typically free of defects in their
central region.
The standard description of nanoscale cohesion, pioneered by Landman et al. [24], is

via molecular dynamics simulations [24–26] which utilize short-ranged interatomic po-
tentials suitable to describe the bulk properties of metals. However, such an approach
appears problematic when applied to metal nanowires, in which electron-shell effects
[11] due to the transverse confinement are likely to be important. On the other hand,
atomistic quantum calculations [27] using, e.g., the local-density approximation, are re-
stricted to such small systems that their results can not really be disentangled from
finite-size effects [20]. An alternative approach, developed by our group, is to replace
the discrete ionic coordinates by a coarse-grained jellium background, in order to be
able to treat the electronic degrees of freedom correctly. We have argued [15] that an
atomic-scale contact between two pieces of metal can be thought of as a waveguide for
conduction electrons (which are responsible for both electrical conduction and cohesion
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Fig. 2. Left: Measured electrical conductance and cohesive force of a gold nanowire [3] (image
courtesy of N. Agraı̈t). Right: Calculated conductance and force of a metal nanowire, modeled as a
constriction in a free-electron gas with hard walls [15]. Note that eF=lF ’ 1:7 nN in gold



in simple metals): Each quantized mode transmitted through the contact contributes
2e2=h to its conductance and a force of order eF=lF (roughly 1 nN) to its cohesion,
where lF is the de Broglie wavelength of an electron at the Fermi energy eF (see Fig. 2,
right panel). To my knowledge, our approach is the only one in which the observed
correlations between the cohesive and conducting properties of metal nanowires have
been explained within a single theoretical model.
The paper is organized as follows: The free-electron model of nanoscale conductors

is introduced in the next section, followed by a discussion of quantum transport, includ-
ing the effect of realistic contacts to the nanowire. Nanoscale cohesion is then analyzed
within our model, followed by a discussion of the remarkable stability of nanowires.
The paper concludes with some comments about the technological promise of metal
nanowires.

Free-Electron Model We investigate the simplest possible model [15, 16] for a metal
nanowire: a free (conduction) electron gas confined within the wire by Dirichlet bound-
ary conditions. A nanowire is an open quantum system, and so is treated most naturally
in terms of the electronic scattering matrix S. The Landauer formula [28] expressing the
electrical conductance in terms of the submatrix S12 describing transmission through the
wire is

G ¼ 2e2

h

ð
de

�@f ðeÞ
@e

Tr Sy12ðeÞS12ðeÞ
n o

¼T!0 2e2

h

P
n
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where f ðeÞ is the Fermi-Dirac distribution function and the transmission probabilities
fTng are the eigenvalues of Sy12S12. The conductance of a metal nanocontact was calcu-
lated exactly in this model by Torres et al. [29]. The appropriate thermodynamic potential
to describe the energetics of such an open system is the grand canonical potential W

W ¼ � 1
b

ð
de gðeÞ ln ð1þ e�bðe�mÞÞ ¼T!0

ðeF
0

de gðeÞ ðe� eFÞ ; ð2Þ

where b is the inverse temperature, m is the chemical potential of electrons injected into
the nanowire from the macroscopic electrodes, and gðeÞ is the electronic density of
states (DOS) of the nanowire. The DOS of an open system may be expressed in terms
of the scattering matrix as [30]

gðeÞ ¼ 1
2pi

Tr SyðeÞ @S

@e
� h.c.

� �
: ð3Þ

This formula is also known as the Wigner delay. Thus, once the electronic scattering
problem for the nanowire is solved, both transport and energetic quantities can be
readily calculated [15–17]. Electron–electron interactions can be included at the mean-
field level in this model in a straightforward way [16, 19, 21], but do not alter our main
conclusions.

Quantum Transport Evaluating the transmission probabilities fTng in the WKB approx-
imation for an axially-symmetric nanowire [15], the conductance calculated from Eq. (1)
is shown in the upper-right panel of Fig. 2. Plateaus in the conductance at integer multi-
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ples of G0 are evident, with some rounding of the steps due to tunneling. Some integers
are absent, reflecting the degeneracies associated with axial symmetry [2, 29].
Conductance steps of size G0 were first observed in quantum point contacts (QPCs)

fabricated in semiconductor heterostructures [28] and are a rather universal phenome-
non in metal nanowires [1–4], even being found in contacts formed in liquid metals [6].
The precision of conductance quantization in metal nanowires is poorer than that in
semiconductor QPCs due to their inherently rough structure on the scale of the Fermi
wavelength lF, which causes backscattering [17], and due to the imperfect hybridization
of the atomic orbitals in the contact, especially for multivalent atoms [7]. For this rea-
son, a statistical analysis of data for a large number of contacts is often made [1, 2, 6,
10, 11], resulting in a conductance histogram (see Fig. 3a).
To model quantum transport in gold nanowires, where there are no ‘‘missing inte-

gers” in the conductance histogram [1, 6, 10], geometries without axial symmetry were
chosen, and weak disorder, corresponding to a mean-free path kF‘ ¼ 270, was included
both in the nanowire and in the electrodes neighboring it [17]. The transmission prob-
abilities were calculated by solving Schrödinger’s equation using a recursive Green’s
function algorithm [17]. Averaging over different contact shapes and impurity configura-
tions, we obtained the histogram shown in Fig. 3a, which is very similar to typical ex-
perimental histograms for gold [1, 6, 10]. The effect of disorder is twofold [17]: the
conductance peaks are shifted downward due to backscattering, and the peaks are broa-
dened due to universal conductance fluctuations, filtered by the nanowire.
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Fig. 3. a) Calculated conductance histogram [17]; b) calculated mean shot noise sIh i (grey squares
[18], together with experimental data from Ref. [10] (black circles); c) mean transmission probabil-
ities Tnh i [18]. The error bars indicate the standard deviations of the numerical results over the
ensemble and the experimental errors, respectively



Recently, additional information on quantum transport in metal nanowires has been
obtained from experiments on shot noise [10]. Shot noise is the term used to describe
the temporal fluctuations of electric current arising from the discreteness of the electric
charge e. In 1918, Schottky showed that if the arrival times of charge carriers are uncor-
related, the shot-noise spectral power PI ¼ 2eI, where I is the time-average current.
However, in a quantum conductor with a finite number of transmitted modes, the shot
noise is suppressed below the Schottky value due to anticorrelations induced by Fermi-
Dirac statistics. The suppression factor at zero temperature is given by [10]

sI ¼
PI

2eI
¼

P
n
Tnð1� TnÞP

n
Tn

: ð4Þ

Figure 3b shows the measured shot noise (solid circles [10]) of gold nanowires as a
function of their conductance. The pronounced suppression of sI for wires with conduc-
tances near integer multiples of G0 reveals unambiguously the quantized nature of the
electronic transport. We computed [18] the mean and standard deviation of sI and Tn

as functions of G (grey squares in Fig. 3) from the numerical data used to generate the
conductance histogram in Fig. 3a. The agreement of the experimental results for parti-
cular contacts and the calculated distribution of sI shown in Fig. 3b is extremely good:
67% of the experimental points lie within one standard deviation of hsIi and 89% lie
within two standard deviations. It should be emphasized that no attempt has been
made to fit the shot-noise data; the numerical data of Ref. [17], where the length of the
contact and the strength of the disorder were chosen to model experimental conduc-
tance histograms for gold, have simply been reanalyzed to calculate hsIi. The 97% sup-
pression of shot noise for nanowires with a single quantum of conductance (i.e., wires
one atom thick) suggests that such wires could be useful for low-temperature/low-noise
applications, such as quantum computing.

Metallic Nanocohesion The cohesive force of the nanowire is F ¼ �@W=@L, where L
is the length of the nanowire. We assume that the volume per atom is conserved under
elongation (ideal plastic deformation), so that the deformation occurs at constant vol-
ume (for alternative constraints, see Refs. [19, 21]. While the conductance is determined
by the transmission probabilities, Eqs. (2) and (3) indicate that the energetics of a nano-
wire are determined by the scattering phase shifts. Evaluating the phase shifts in the
WKB approximation, performing the energy integral in Eq. (2) at T ¼ 0, and taking
the derivative with respect to elongation [15], one finds the force shown in the lower-
right panel of Fig. 2. The correlations between the force and conductance are striking:
as the wire is elongated and its diameter decreases, jF j increases along a conductance
plateau, but decreases sharply when the conductance drops. Each transmitted mode
acts like a delocalized metallic bond, which can be stretched and broken.
The calculated force is remarkably similar, both quantitatively and qualitatively, to

the measured force for gold nanowires, shown in the lower-left panel of Fig. 2. Inserting
the value eF=lF ’ 1:7 nN for gold, we see that both the overall scale of the force for a
given value of the conductance and the heights of the last two force oscillations are in
quantitative agreement with the experimental data. One discrepancy is that the jumps
in both force and conductance are less abrupt than in the experimental curves, possibly
because we considered only geometries that change continuously with elongation.
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In order to separate out the mesoscopic sawtooth structure in the force, associated
with the opening of individual conductance channels, from the overall (macroscopic)
trend of the contact to become stronger as its diameter increases, it is useful to perform
a systematic semiclassical expansion [31, 32] of the DOS, gðeÞ ¼ �ggðeÞ þ dgðeÞ, where �gg is
a smooth average term, referred to as the Weyl contribution, and dgðeÞ is an oscillatory
term, whose average is zero. For the free electron model with Dirichlet boundary con-
ditions, the Weyl term is [32]

�ggðeÞ ¼ e�1 k3V

2p2
� k2A

8p
þ kC

6p2

� �
; ð5Þ

where k ¼
ffiffiffiffiffiffiffiffiffi
2me

p
=�h, V is the volume of the wire, A its surface area, and C the integrated

mean curvature of its surface. The oscillatory contribution dgðeÞ to the DOS may be ap-
proximated as a Feynman sum over classical periodic orbits à la Gutzwiller [31, 32]

dgðeÞ ¼
P
n
An cos

SnðeÞ
�h

þ qn

� �
; ð6Þ

where Sn is the classical action of a periodic orbit, qn is a phase shift determined by the
singular points along the classical trajectory, and An is an amplitude depending on the
stability, symmetry, and period of the orbit. Using �ggðeÞ in Eq. (2), one can derive a
Sharvin-like formula for the force

F ¼ �FF þ dF ; �FF ¼ � eF
lF

pkFD

16
� 4

9

� �
: ð7Þ

The first term in �FF is the surface tension. The oscillatory mesoscopic correction dF may
be calculated with the aid of Eq. (6). Under reasonable assumptions about the geome-
try, it can be shown [19] that the amplitude of the force oscillations is universal

rms ðdFÞ ¼ 0:58621eF=lF : ð8Þ

In more realistic models including electron–electron interactions [16, 19, 21] and self-
consistent confining potentials [33], the surface tension is typically reduced compared to
Eq. (7), but the force oscillations are essentially the same as in the free-electron model.

Stability of Nanowires A cylindrical body longer than its circumference is unstable to
breakup under surface tension [23], a phenomenon known as the Rayleigh instability.
How then to explain the durability of long gold nanowires (cf. Fig. 1b), the thinnest of
which have been shown [12] to be almost perfectly cylindrical in shape? The key is the
quantum corrections [22] to the classical stability coefficients.
Only axially-symmetric deformations can lower the surface energy of a cylindrical object,

and thus lead to an instability [23]. Any such deformation may be written as a Fourier series

RðzÞ ¼ R0 þ
Ð1

�1
dq bðqÞ eiqz ; ð9Þ

where RðzÞ is the radius of the wire at z, R0 is the radius of the unperturbed cylinder,
and bðqÞ is a complex perturbation coefficient. Using Eqs. (5) and (6) in Eq. (2), one
obtains the following expansion [22]

W½b� ¼ W½0� þ
Ð1
0
dq aðqÞ jbðqÞj2 þOðb3Þ ; ð10Þ
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where the stability coefficient aðqÞ de-
pends implicitly on R0 and T. The
change in the grand canonical potential
is of second order in b and contributions
from deformations with different q de-
couple. If aðqÞ is negative for any value

of q, then W decreases under the deformation and the wire is unstable.
Let us first discuss the stability of a nanowire at zero temperature. Figure 4 shows

the stability coefficient (lower diagram) and DOS (upper diagram) at the classical stabi-
lity threshold qR0 ¼ 1 as a function of R0. For a straight wire, the transverse motion is
quantized, and the DOS consists of a sequence of sharp peaks associated with the open-
ing of each successive subband. a has sharp negative peaks – indicating strong instabil-
ities – at the subband thresholds, where the density of states is sharply peaked. Under
surface tension and curvature energy alone (dashed curve in Fig. 4), the wire would be
slightly unstable at the critical wavevector qR0 ¼ 1, since the curvature term is negative.
However, the quantum correction is positive in the regions between the thresholds to
open new subbands, thus stabilizing the wire. Since the oscillatory contribution to a is
independent of q, we find that regions of stability persist for arbitrarily long wavelength
perturbations, indicating that an infinitely long cylindrical wire is a true metastable state
if the radius lies in one of the windows of stability.
With these results, we can construct a stability diagram for metal nanowires (see Fig. 5).

In the semiclassical approximation, da=dq > 0 always, so the stability of the wire is
determined by the sign of aðq ¼ 0Þ. að0Þ is a function of two dimensionless parameters,
kFR0 and T=TF. Regions where að0Þ > 0 are shaded dark in Fig. 5, while regions where
að0Þ < 0 are unshaded. The stable regions persist up to extremely high temperatures
for several quantized conductance values (recall that TF > 104 K for metals), indicating
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Fig. 4. Density of states gðeFÞ of a cylindrical
wire (upper diagram) and zero temperature
stability coefficient a (lower diagram) versus
the radius R0 of the unperturbed wire. The
wavevector of the perturbation is qR0 ¼ 1.
Dashed curve: Weyl contribution to a

Fig. 5. Stability of metal nanowires
as a function of radius and tem-
perature. Shaded regions indicate
stability with respect to small per-
turbations; unshaded regions de-
note unstable configurations. Here
TF is the Fermi temperature and
R0 is the mean radius of the wire.
The quantized conductance values
of the stable wires are indicated



that electron-shell effects may stabilize nanowires even for temperatures well above the
bulk melting temperature. It is important to point out that if a more realistic value of
the surface tension [19, 21, 33] was used, the stability boundaries would be pushed to
even higher temperatures. Thus the astounding stability properties shown in Fig. 5 are a
very robust prediction of the jellium model.

Conclusions Wires formed from chains of individual metal atoms have a number of
properties which make them promising for nanotechnology: They are very strong, able
to support tensions up to eF=lF � 1 nN. Contrary to naive expectations, they are extre-
mely stable, despite their large surface to volume ratio. They are nearly-ideal one-di-
mensional conductors, and exhibit dramatically-reduced shot noise. One potential appli-
cation of metal nanowires is for integrated-circuit interconnects, due to their high
conductance and structural robustness. The quantum suppression of shot noise in nano-
wires may also make them useful for low-temperature/low-noise applications, such as
quantum computing.
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[30] R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev. 187, 345 (1969).
[31] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York 1990.
[32] M. Brack and R. K. Bhaduri, Semiclassical Physics, Addison-Wesley, Reading (Mass.) 1997.
[33] C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 57, 4872 (1998).

phys. stat. sol. (b) 230, No. 2 (2002) 489




