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Convergent semiclassical trace formulas for the density of states and the cohesive force of a na
constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived.
shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in
cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum param
describing the crossover from chaotic to integrable motion, and is of order 1 nN, in agreement w
recent experiments.
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An intriguing question posed by Kac [1] is the follow-
ing: “Can one hear the shape of a drum?” That is, give
the spectrum of the wave equation [1] or Schrödinger
equation for free particles [2] on a domain, can one inf
the domain’s shape? This question was answered in
negative [1,2]; nevertheless there is an intimate relati
between the two. In the context of metallic nanocohesio
[3–10], a related question has recently emerged: “Can o
feel the shape of a metallic nanocontact?” It was show
experimentally [3] that the cohesive force of Au nanocon
tacts exhibits mesoscopic oscillations on the nano-Newt
scale, which are synchronized with steps of order2e2�h in
the contact conductance. In a previous article [4], it wa
argued that these mesoscopic force oscillations, like t
corresponding conductance steps [11], can be underst
by considering the nanocontact as a waveguide for the c
duction electrons (which are responsible for both condu
tion and cohesion in simple metals). Each quantized mo
transmitted through the contact contributes2e2�h to the
conductance [11] and a force of order´F�lF to the cohe-
sion, wherelF is the de Broglie wavelength at the Ferm
energý F . It was shown by comparing various geometrie
[4] that the force oscillations were determined by the are
and symmetry of the narrowest cross section of the conta
and depended only weakly on other aspects of the geom
try. Subsequent studies confirmed this observation, bo
for generic geometries [5,7,8,10], whose classical dyna
ics ischaotic, and for special geometries [6,9], whose clas
sical dynamics isintegrable. The insensitivity of the force
oscillations to the details of the geometry, along with th
approximate independence of their rms size on the cont
area, was termeduniversality in Ref. [4]. A fundamental
explanation of the universality observed in both the mod
calculations [4–10] and the experiments [3] has so far be
lacking.

In this Letter, we derive semiclassical trace formulas fo
the force and charge oscillations of a metallic nanoconta
modeled as a constriction in an electron gas with har
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wall boundary conditions (see Fig. 1, inset), by adapti
methods from quantum chaos [12–15] to describe
quantum mechanics of such an open system. It is fou
that Gutzwiller-type trace formulas [12–15], which typ
cally do not converge for closed systems, not only co
verge but give quantitatively accurate results for op
quantum mechanical systems, which are typically mo
difficult to treat than closed systems by other methods. U
ing these techniques, we demonstrate analytically that
force oscillationsdF of a narrow constriction in a three
dimensional (3D) electron gas (i) depend only on the
ameterD� and radius of curvatureR of the neck, (ii) have
an rms value which is independent of the conductanceG
of the contact and depends only on a scaling parametea

which describes the crossover from chaotic to integra
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FIG. 1. Inset: Schematic diagram of a metallic nanocontact.
(a) Conductance G and (b) DOS g�´F� for 2D nanocontacts
with a � 5 versus the contact diameter D�. g is normalized
to the area A of the region. Solid curves: semiclassical result
based on Eq. (8); crosses with error bars: numerical results
using the method of Ref. [10]. Lower curves in (a) and
(b): R � lF ; upper curves (offset vertically): R � 170lF .
© 1999 The American Physical Society
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motion, and (iii) are proportional to the charge oscillations
induced on the contact by the quantum confinement. Fur-
thermore, we show (iv) that the force and charge oscilla-
tions are suppressed only weakly (algebraically) in short
contacts, unlike conductance quantization, which is sup-
pressed exponentially [11]. Conclusion (ii) is specific to
3D contacts, and breaks down for, e.g., two-dimensional
(2D) nanowires, where rms dF ~ G21�2. Conclusions (i),
(ii), and (iv) are unchanged when electron-electron inter-
actions are included within the Hartree approximation.

The properties of simple metals are determined largely
by the conduction electrons, the simplest model of which
is a free-electron gas confined within the surface of
the metal. We take the confinement potential to be a
hard wall; the mesoscopic effects are virtually unchanged
when one considers a more realistic confinement potential
[7]. The grand canonical potential V is the appropriate
thermodynamic potential describing the energetics of the
electron gas in the nanocontact [4], and is

V � 2
1
b

Z
dE g�E� ln�1 1 e2b�E2m�� , (1)

where g�E� is the electronic density of states (DOS) and
b is the inverse temperature [16]. The total number of
electrons in the system is

N2 �
Z

dE f�E�g�E� , (2)

where f�E� is the Fermi-Dirac distribution function.
The DOS can be decomposed [12,13] in terms of a

smooth Weyl contribution and a fluctuating term dg�E�,

g�E� �
k3

EV

2p2E
2

k2
ES

8pE
1

kEC

6p2E
1 dg�E� , (3)

where kE � �2mE�h̄2�1�2, V is the volume of the elec-
tron gas, S is its surface area, and C �

1
2

R
ds�1�R1 1

1�R2� is the mean curvature of its surface, R1,2 being
the principal radii of curvature. The first three terms in
Eq. (3) are macroscopic, while dg determines the meso-
scopic fluctuations of the equilibrium properties of the
system. Inserting Eq. (3) into Eqs. (1) and (2), and taking
the limit of zero temperature, one finds

V

´F
� 2

2k3
FV

15p2 1
k2

FS

16p
2

2kFC

9p2 1
dV

´F
, (4)

N2 �
k3

FV

3p2 2
k2

FS

8p
1

kFC

3p2 1 dN2 , (5)

where kF � 2p�lF is the Fermi wave vector. The
corrections to Eqs. (4) and (5) at finite temperature may
be evaluated straightforwardly [13], and are quite small at
room temperature, since ´F�kB . 104 K.

The cohesive force of the nanocontact is given by the
derivative of the grand canonical potential with respect to
elongation, F � 2≠V�≠L. Under elongation, the contact
narrows and its surface area S increases, which would
lead to a macroscopic surface charge by Eq. (5) if V
were held fixed. This is due to the hard-wall boundary
condition, which leads to a depletion of negative charge
in a layer of thickness �lF at the boundary [17]. The
macroscopic incompressibility of the electron gas can be
included by imposing the constraint N̄2 � const [18],
where N̄2 is given by the first three terms in Eq. (5).
The macroscopic electronic charge 2eN̄2 is neutralized
by the equal and opposite positive charge of the jellium
background. The net charge imbalance on the nanocontact
(neglecting screening) is thus dQ0 � 2edN2, which we
will show to be quite small—on the order of a single
electron charge. Differentiating Eq. (4) with respect to L
with the constraint N̄2 � const, one finds

F � 2
≠V

≠L

Ç
N̄2

� 2
sV

5
≠S

≠L
1

2
5

≠�C�p�
≠L

DFtop 1 dF,

(6)

where sV � ´Fk2
F�16p is the surface energy of a non-

interacting electron gas [4] at fixed V , and DFtop �
4´F�9lF . The reduction of the surface energy by a factor
of 5 has been discussed by Lang [17]. The second term
on the right-hand side of Eq. (6), termed the “ topological
force” by Höppler and Zwerger [5] since it depends only
on the topology of the cross section in the adiabatic limit,
is reduced by a factor of 2.5. Importantly, since the con-
straint N̄2 � const differs from the constraint V � const
used in previous work [4–6,8–10] only by terms of order
�kFD��21, the mesoscopic fluctuations dF and dN2 are
quite insensitive to the choice of constraint.

The fluctuating part of the DOS dg may be evaluated
in the semiclassical (stationary-phase) approximation as a
sum over the periodic classical orbits of the system [12–
15]. For closed systems, the sum over periodic orbits
is generically not convergent, and a broadening of the
energy structure in dg�E� must be introduced by hand
[13]. However, we shall see that for an open system, such
as a nanocontact, the periodic orbit sum converges; the
finite dwell time of a particle in an open system introduces
a natural energy broadening.

Let us first consider the case of a 2D nanocontact. For
a finite radius of curvature R, there is only one unstable
periodic classical orbit (plus harmonics), which moves up
and down at the narrowest point of the neck. One obtains

dg2D
sc �E� �

2mD�

p h̄2kE

X̀
n�1

cos�2nkED��
sinh�nx�

, (7)

where the Lyapunov exponent x of the primi-
tive periodic orbit satisfies exp�x� � 1 1 D��R 1p

�1 1 D��R�2 2 1. Equation (7) diverges when
x ! 0, i.e., when R ! `. In that limit, the nanocontact
acquires translational symmetry along the z axis, so that
a generalization of the Gutzwiller formula obtained by
Creagh and Littlejohn [14] must be used, which gives a
finite result. In this limit, the motion is classically inte-
grable. One can treat small deviations from translational
symmetry via perturbation theory in 1�R. The resulting
asymptotic behavior for large R may be combined with
4837
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the result [Eq. (7)] valid for small R to construct the
following interpolation formula, valid for arbitrary R:

dg2D
int �E� �

p
8 mD�

p h̄2kE

3
X̀
n�1

C

µ
2nkED� 2

p

4 ,
q

nkEL2

pR

∂
sinh�nx�

, (8)

where C �x, y� � cos�x�C� y� 2 sin�x�S� y�, with C and
S Fresnel integrals. In Eq. (8), the specific shape of the
nanocontact was taken to be D�z� � D� 1 z2�R. For a
discussion of related interpolation formulas, see Ref. [15].
There is a smooth crossover between the strongly chaotic
(R ! 0) and the nearly integrable (R ! `) regimes, de-
scribed by the scaling parameter

a � L�
p

lFR . (9)

We refer to a as the quantum chaos parameter, since the
quantum fluctuations of the system correspond to those of
a chaotic system when a ¿ 1 and correspond to those of
an integrable system when a ø 1.

Figure 1 shows a comparison of the semiclassical result
[Eq. (8) 1 Weyl term] and a numerical calculation of g
using a recursive Green’s function technique [10]. The
agreement of the semiclassical result and the numerical
calculation is quite good, even in the extreme quantum
limit G & 2e2�h. The small discrepancy is of the size
expected due to diffractive corrections [13] from the
sharp corners present in the geometry studied numerically,
where the nanocontact was connected to straight wires of
width kFD � 52 for technical reasons.

The denominator sinhnx in Eqs. (7) and (8) describes
the rounding of the peaks in the DOS due to the finite dwell
time of an electron in the neck. In the limit R ¿ D�,
the Lyapunov exponent x !

p
2D��R, and one recov-

ers the WKB approximation of Ref. [4]. In the opposite
limit R ø D�, sinhx ! D��R, so dg is suppressed rela-
tive to the value expected in the WKB approximation
(which neglects finite dwell-time effects) by a factor ofp

2R�D�. In the adiabatic approximation, the energies
of the transverse modes in the point contact are ´n�z� �
�h̄2�2m� �pn�D�z��2 � ´n�0� 2 mv2

nz2�2 1 · · · and the
probability that an electron of energy E in mode n will be
transmitted through the point contact is [11] Tn�E� 	 �1 1

exp
22p�E 2 ´n�0���h̄vn��21. The quality of the con-
ductance quantization thus decreases exponentially with
the parameter h̄vn�D´n 	 p21

p
2D��R, where D´n �

´n 2 ´n21, while the DOS fluctuations dg are suppressed
only inversely proportional to this parameter.

Let us now consider the experimentally relevant case
of an axially symmetric 3D nanocontact. For finite R, all
classical periodic orbits lie in the plane of the narrowest
cross section of the contact; however, there are now
countably many distinct families of singly degenerate
periodic orbits [9,13], labeled by their winding number
4838
w about the axis of symmetry z and by the number
of vertices y $ 2w. The interpolation formula for dg,
describing the crossover from the chaotic regime a ¿ 1
to the integrable regime a ø 1, is

dg3D
int �E� �

m
h̄2
p

pkE

X̀
w�1

X̀
y�2w

fywL
3�2
yw

y2 sinh�yxyw�2�

3 C �kELyw 2
3yp

2 , a
p

y sin fywkE�kF� ,

(10)

where fyw � pw�y, fyw � 1 1 u�y 2 2w�, and

exyw � 1 1
Lyw sinfyw

yR
1

sµ
1 1

Lyw sinfyw

yR

∂2

2 1,

where Lyw � yD� sinfyw is the length of a periodic
orbit. We emphasize that the double sum over w and
y in Eq. (10) converges due to the finite Lyapunov
exponent xyw . In Eq. (10), higher-order terms in the
small parameter 1�kED� have been omitted.

The mesoscopic force and charge fluctuations are cal-
culated by inserting Eq. (10) into Eqs. (1), (2), and (6).
In order to demonstrate the universality of the force
oscillations, it is necessary to make some physically
reasonable assumptions regarding the scaling of the ge-
ometry when the nanowire is elongated. It is natural to
assume that the deformation occurs predominantly in the
narrowest section, where the wire is weakest. This as-
sumption, combined with the constraint of incompress-
ibility N̄2 � const, implies D�2L � const. Furthermore,
the radius of curvature R ~ L2��D 2 D��, where D
is the diameter at 6L�2, which implies ≠ lnR�≠ lnL �
2 1 �≠ lnD��≠ lnL���D�D� 2 1� � 2. Thus the quan-
tum chaos parameter a � const under elongation.

Using these assumptions about the scaling of the
geometry with elongation, the derivative with respect to
L in Eq. (6) can be evaluated; the general formula for dF
is rather lengthy, and will be presented elsewhere. Here
we give only the limiting behavior of the leading-order
semiclassical results:

dF 	
a¿1

2
´F

L

X̀
w�1

X̀
y�2w

s
Lyw

lF

fyw sin�kFLyw 2 by�
y2 sinh�yxyw�2�

,

(11)

dF 	
aø1

2
2´F

lF

X̀
w�1

X̀
y�2w

fyw

y2 sin�kFLyw 2 3yp�2� ,

(12)

where by � 3yp�2 2 p�4. dF is an oscillatory func-
tion of kFD�, and is plotted in Fig. 2 for R ¿ D�.

The rms amplitude of the force oscillations may be
readily calculated from Eqs. (11) and (12). We find
that rms dF is independent of D�, and, apart from small
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FIG. 2. Force oscillations dF versus the minimum con-
tact diameter D�: dashed curve: lima!0
dF�; solid curve:
lima!`
adF�. The result for a ¿ 1 (chaotic motion) is con-
sistent with previous results based on the WKB approximation
[4], while the result for a ! 0 (integrable limit) agrees with
the result [6,9] for a straight wire.

corrections due to tunneling when R ø D�, depends only
on the quantum chaos parameter a:

rms dF �
´F

lF
3

Ω
0.58621 a ø 1
0.36208a21 a ¿ 1 . (13)

The quantum fluctuations in the chaotic regime a ¿ 1
are suppressed relative to those in the integrable limit
a ø 1 due to the reduced measure of the periodic orbits
in phase space [19]. For a realistic geometry of the
nanowire [3], one expects both the radius of curvature
and the elongation to be on the scale of lF , implying
a � 1. There is also experimental evidence [20] of
exceptional geometries with R ¿ lF , implying a ø 1.
Thus the mesoscopic oscillations of the cohesive force are
expected [21] to be universal rms dF � ´F�lF � 1 nN
in monovalent metals.

Equation (10) and the assumption D�2L � const
imply that the force and charge oscillations are pro-
portional to each other in 3D nanocontacts: dF �
2´FdN2�L 1 O �1�kFD��. In an interacting system,
the charge oscillations are screened [8], and the Hartree
correction to the grand canonical potential is bounded by
DV , dN2

2�2g�´F�. Evaluating the sums over periodic
orbits, we find that the average interaction correction �DV

is small compared to the mesoscopic oscillations of V:
�DV
�rms dV , 1.36791�kFD�, where kFD� . 4.81
for a contact with nonzero conductance. This result
justifies the use of the independent-electron approximation
[4–6,8–10].

In conclusion, we have shown that trace formulas
à la Gutzwiller converge and give quantitatively accurate
results for the equilibrium quantum fluctuations in point
contacts and nanowires. Using this approach, we have
shown that the cohesive force of a metallic nanocontact,
modeled as a hard-wall constriction in an electron gas,
exhibits universal mesoscopic oscillations, whose size
rms dF � ´F�lF is independent of the conductance and
shape of the contact, and depends only on a dimension-
less parameter a characterizing the degree of quantum
chaos. Our prediction of universality is consistent with
all experiments performed until now [3].
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