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The transfer of charge between different regions of a phase-coherent mesoscopic sam
investigated. Charge transfer from a side branch quantum dot into a ring changes the persistent
through a sequence of plateaus of diamagnetic and paramagnetic states. In contrast, a quan
embedded in a ring exhibits sharp resonances in the persistent current, whose sign is indepen
the number of electrons in the dot if the total number of electrons in the system is even. It is s
that such a mesoscopic system can be polarized appreciably not only by the application of an e
voltage but also via an Aharonov-Bohm flux.

PACS numbers: 73.20.Dx, 71.27.+a, 73.40.Gk
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The transfer of a single electronic charge from o
region of a mesoscopic conductor into another reg
of the conductor can dramatically alter the mesosco
properties of the conductor. In this work, we take t
persistent current of a ring [1–3] as a phase sensi
probe of the equilibrium state of the conductor a
investigate its properties under charge transfer. In Fig
two samples are shown in which a ringlike structure
penetrated by an Aharonov-Bohm (AB) fluxF and is
connected to a quantum dot. If the sample is brou
into an external capacitive circuit, it can be polarize
charge transfer from one portion of the sample in
the quantum dot can be induced. The charge tran
changes the potential landscape, and with it chan
the phase-sensitive properties of the mesoscopic sam
Both the electrochemical capacitanceCm ­ edkQlydm

and the flux-induced capacitanceCF ­ edkQlydF are
periodic functions of the AB flux [4]. For the samples o
Fig. 1, we find indeed very striking flux sensitive featur
in these capacitance coefficients. Measurement of s
capacitance coefficients provides an important alterna
to the difficult magnetization measurements [2] used
characterize the ground state of mesoscopic samples.

A purely one-dimensional ring exhibits a persistent cu
rent which is either diamagnetic or paramagnetic depe
ing on the number of particles and their distribution ov
the flux-sensitive states [5]. The persistent current is
ways an odd function of fluxIsFd ­ 2Is2Fd. But the
slope of the persistent currentdIsFdydF for a small flux
can be either negative (diamagnetic) or positive (param
netic). To be brief, we say that a diamagnetic grou
state has a positive parity and a paramagnetic ground s
a negative parity. If we consider the contribution to t
persistent current of each spin class separately, then
addition of a single electron changes the parity of its s
class [5]. For the sample in Fig. 1(a), in which the d
acts as a fully coherent reservoir of carriers, charge tra
fer thus induces sharp transitions between plateaus of
magnetic and paramagnetic states. However, the parit
the composite dot-ring system is not simply determin
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by the total number of particles, which is invariant unde
charge transfer, but depends explicitly on both the sing
particle potential and the interactions [6].

For the ring of Fig. 1(b), the persistent current is su
pressed by charging effects unless the conditions for r
onant charge transfer are met, an effect analogous to
Coulomb blockadeobserved in the conductance throug
a quantum dot coupled to macroscopic leads [7–9]. T
charge transfer discussed here should, however, be
tinguished from the standard discussions of the Coulo
blockade [8], which treat charge transfer incoherent
Here we deal with coherent many-body states which
extended overmultiple regions [10–12]. In contrast to
the sample of Fig. 1(a), we find for the ring of Fig. 1(b
that the sign of the persistent current contributed by ea
spin class isindependentof the number of electrons in
the dot. The parity of each spin class is conserved
der charge transfer, and is determined only by the to

FIG. 1. (a) Ring with Aharonov-Bohm flux coupled to a sid
branch quantum dot. (b) Quantum dot with leads closed int
loop.
© 1996 The American Physical Society 495
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number of electrons in the sample, regardless of whe
these electronic states are localized or whether the s
are extended and contribute to the persistent current [

The geometry of Fig. 1(a) has been the subject
Refs. [4,13]. A recent experiment [14] and theory [1
investigated the AB effect of a quantum dot embedd
in a loop and connected to two leads. Here we tr
explicitly the capacitively coupledclosed structures an
analyze the charge response.

The system of Fig. 1 is modeled in terms of a on
dimensional ring coupled capacitively and via tunneling
a quantum dot. The electron-electron interactions in
system are treated using a capacitive charging mode
indicated in Fig. 1: The system is coupled to two exter
metallic gates at voltagesV1 and V2 with capacitance
coefficients C1 and C2. In addition, the quantum do
couples to the ring with capacitanceCi [­ CR 1 CL

for the case shown in Fig. 1(b)]. With the combin
capacitancesC21

e ­ C21
1 1 C21

2 and C ­ Ce 1 Ci, we
can express the electrostatic Hamiltonian (which inclu
the work done by the voltage sourcesV1 andV2) in terms
of the charge operator for the dotQ ­

P
ns dy

nsdns , a
polarization chargeQ0 ­ CeV , and the externally applie
voltageV ­ V2 2 V1,

HC ­ s1y2CdsQ 2 Q0d2 2 sCey2dV2. (1)

The total Hamiltonian for the system isH ­ H0 1 HT 1

HC , where H0 ­
P

ks eakc
y
kscks 1

P
ns edndy

nsdns

describes the single-particle eigenstates in the
and the dot, and the tunneling Hamiltonian
HT ­

P
kns

°
tkndy

nscks 1 H.c.
¢
. For the system o

Fig. 1(a), the AB flux modulates the single-partic
energy levelseak in the ring, while for the system o
Fig. 1(b), the tunneling matrix elementstkn connecting
the dot to the ring are flux dependent.HC favors integer
charge states of the quantum dot [7–9], whereasHT

promotes hybridization of the localized states on the
with the extended states of the ring. Our Hamilton
is similar to the Anderson model [16] for a magne
impurity (or quantum dot [17]) coupled to a Fermi sea
conduction electrons, but here the reservoir of conduc
electrons is itself a mesoscopic system with a finite le
spacing and bandwidth. In order to account for
tendency toward charge quantization in the system,HC

must be treated nonperturbatively. We therefore emp
two complementary approaches: In the weak-tunne
limit, where hybridization occurs only between a sing
state in the ring and in the dot,H can be reduced to
2 3 2 matrix (3 3 3 including spin), allowing for an
explicit solution. This simple analytical solution correct
describes the interesting parity effects in the system.
ground state is also found exactly for arbitrary coupl
using a numerical Lanczos technique.

Figures 2(a) and 2(b) show numerical results for
persistent currentI ­ 2cdE0ydF and the electrochemi
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FIG. 2. Persistent current and differential capacitance as
function of the polarization chargeQ0 ­ CeV for (a) the sam-
ple of Fig. 1(a) witht ­ 0.5 and (b) the sample of Fig. 1(b)
with tR ­ 0.2 and tL ­ 0.3. Each sample contains six elec
trons, with FyF0 ­ 1y4, and e2yC ­ 10. Energy is ex-
pressed in units ofw, 4w being the bandwidth in the ring.
The persistent current (solid curve) is expressed in units
I0 ­ maxseyFyLd, where L is the circumference of the ring,
and the capacitance (dotted curve) is expressed in units
sCeyCd2e2yw. Each peak inCm corresponds to the transfe
of one electron from the dot to the ring.

cal capacitanceCm ­ 2d2E0ydV 2 of the systems of
Figs. 1(a) and 1(b), respectively, as a function of the p
larization chargeQ0. Here E0 was evaluated computa
tionally, with the single-particle energy levelseak andedn

in the ring and dot and the tunneling matrix elementstkn

modeled using a one-dimensional tight-binding model
which the dot was represented by two sites, and the r
by four sites. The matrix elementw of the kinetic en-
ergy operator between nearest-neighbor sites within
ring and the dot was taken to be unity, and the point co
tacts were modeled as weak links. For the case of th
up-spin and three down-spin electrons, the persistent c
rent of the quantum dot within the loop is diamagneti
while the loop with a side branch quantum dot exhibi
a sequence of plateaus of diamagnetic and paramagn
states. The four peaks inCm in Figs. 2(a) and 2(b), sep-
arated byDQ0 , e, correspond to the successive transf
of electrons from the ring to the dot (for decreasingQ0),
filling the four available single-particle states in the dot.

In order to understand the character of the char
transfer induced oscillations inI and Cm, it is useful to
consider the limittkn ø De, e2yC, where the dot and the
ring are only weakly coupled. Then, in the vicinity o
the charge transfer resonanceN ! N 1 1, whereN is the
number of electrons in the dot, one need only consider
hybridization of the highest occupied leveljaMl in the ring
with the lowest unoccupied leveljdsN 1 1dl in the dot.
Neglecting spin (the effects of which will be considere
further below), the Hamiltonian then reduces to a2 3 2
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matrix,

Hh ­

√
eaM 1

seN1Q0d2

2C t

tp edsN11d 1
fesN11d1Q0g2

2C

!
,

(2)

plus an additive constant

E1 ­
M21X
k­1

eak 1

NX
n­1

edn 2 CeV 2y2 , (3)

whereM 1 N is the total number of (spinless) electron
in the system. For the system of Fig. 1(b), the mat
elementt depends on the total number of nodesM 1

N 2 1 in the wave functionsjaMl and jdsN 1 1dl: its
modulus squared is given by

jt6j2 ­ t2
R 1 t2

L 6 2tRtL coss2pFyF0d , (4)

where the1 holds forM 1 N 2 1 even, and the2 holds
for M 1 N 2 1 odd. HereF0 ­ hcye is the single-
charge flux quantum, andtRyL are energies proportiona
to the transmission amplitudes through the two po
contacts. The hybridization of the localized state of t
dot with the extended state of the ring is a maximum wh
the polarization charge takes the value

Qp ­ 2esN 1 1y2d 1 sCyedfeaM 2 edsN11dg . (5)

Note that this is precisely the polarization charge whi
would be needed to transfer an electron in the class
approach to the Coulomb blockade. For this polarizat
charge, in the classical case, the energy has the form
cusp. In the quantum mechanical case, the ground s
energy is a smooth function of the polarization charge,

E0 ­ E1 1
eaM 1 edsN11d

2
1

e2

8C

1
fesN 1 1y2d 1 Q0g2

2C

2
1
2

µ∑
e
C

sQ0 2 Qpd
∏

2 1 4jt6j2
∂

1y2. (6)

Due to quantum mechanical tunneling, the energy bar
is lower. Note that after transfer of an electron to t
dot, the next hybridization will take place between t
statejasM 2 1dl of the ring and the statejdsN 1 2dl of
the dot. The total number of nodessM 2 1d 1 sN 1

2d 2 2 ­ M 1 N 2 1, which determines the parity o
the system, is left invariant. Let us next explore a fe
consequences of this simple result.

Differentiating Eq. (6), one obtains the persistent cu
rent for the sample of Fig. 1(b),

IsFd ­ 7
e
h̄

4ptRtL sins2pFyF0d
hfesQ0 2 QpdyCg2 1 4jt6j2j1y2

. (7)

The persistent current is a sharply peaked function
the polarization charge, obtaining a maximum val
of Imax ­ c ≠jt6jy≠F at Q0 ­ Qp, and being of order
seyh̄dftRtLyse2yCdg far from resonance. The parity o
IsFd is determined by the matrix elementt6, and is
s
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independent of the polarization chargeQ0. This result
is a consequence of the Friedel sum rule [15], which lin
the phase acquired by an electron traversing the sys
to thetotal charge in the system, which is invariant unde
polarization. Equation (7) indicates that the peaks in t
persistent current exhibit long non-Lorentzian tails aw
from resonance due to charge fluctuations on the quan
dot, as is evident in Fig. 2(b).

The charge on metallic gate1 is determined byQe ­
2dE0ydV . The electrochemical capacitance betwe
gates 1 and 2 is thusCm ­ 2d2E0ydV 2. From Eq. (6),
we find

Cm 2 C0 ­
2e2sC2

eyC2djt6j2

hfesQ0 2 QpdyCg2 1 4jt6j2j3y2
, (8)

where C21
0 ­ C21

e 1 C21
i is the classical series ca

pacitance. The total change of the charge on gate
integrated over such a charge transfer resonance (exc
ing the contribution fromC0) is jDQej ­ esCeyCd, cor-
responding to the transfer of one electron between r
and dot. The quantum corrections toCm reach a maxi-
mum of seCey2Cd2yjt6j at Q0 ­ Qp, and are of order
Cfjt6jyse2yCedg2 far from resonance, decreasing fast
than a Lorentzian. The coherent backscattering in su
a phase-coherent system thus leads to a suppressio
charge transfer away from resonancevis à vis a system
with incoherent charge transfer, such as that studied
Ashoori et al. [18] or Lafargeet al. [19], which would be
expected to exhibit Lorentzian peaks at zero temperatu
That is to say, coherence suppresses charge fluctuat
of the typedQ ­ kQ 2 Nel, which contribute to the ca-
pacitive response of the system, while enhancing cha
fluctuations of the typedQ ­ skQ2l 2 kQl2d1y2, which
govern the persistent current. The parity oft6 determines
the phase of the AB effect onCm, which exhibits a phase
shift of p on resonance.

Let us next briefly describe how the above resu
change for the loop with the side branch quantum d
If the loop and the side dot are disconnected, the ri
supports flux dependent states with energieseaksFd,
whereas the dot supports flux independent states w
energiesedn. Thus, for this system, we have a persiste
current IsFd even in the absence of coupling to th
dot. To take the Coulomb interaction into account in th
presence of a weak coupling to the dot, we again ne
only consider the hybridization of the topmost electron
the ring with the lowest empty state in the dot. For th
energy of the topmost electron, this leads to an eigenva
problem of the same form as Eq. (2), but now wit
coupling matrix elementst which are independent of flux.
The total energy is of the same form as Eq. (6), exce
that the flux dependence is now determined by the sta
of the uncoupled ring.

The sensitivity of the persistent current to changes
the gate voltage can be characterized by the flux-induc
capacitance [4]CF. This capacitance is measured i
497
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response to an oscillating AB fluxdFsvd exps2ivtd
superimposed on the static AB flux, and is given b
CF ­ 2d2EydFdV ­ 2s1ycddIsFdydV . The flux-
induced capacitance is, like the persistent current, an o
function of flux. It has a particularly interesting behavio
for the system of Fig. 1(a), in which case it takes the for

CF ­
4t2esCeyCddeaM sFdydF

ssshefQ0 2 QpsFdgyCj2 1 4t2ddd3y2
(9)

near resonance. BecauseQp is now a function of the AB
flux F, one can pass through the charge transfer re
nance by varyingF. Integrating Eq. (9) with respect to
F, one findsjDQej ­ esCeyCd for the case where the
bandwidth in the ring is large compared tot, correspond-
ing to the transfer of one electron between ring and dot

So far we have neglected spin. For the sample
Fig. 1(b), the discussion given above still applies in th
vicinity of a single resonance for the case when there a
an unequal number of up-spin and down-spin electro
in the system. However, the parity of the persiste
current on resonance is then determined by the spin
the electron being transferred. If the up-spin and dow
spin systems have different parity, this leads to resonan
of alternating sign in the persistent current. For equa
numbers of up-spin and down-spin electrons, the grou
state forms a Kondo singlet. In the weak-coupling limi
the Hamiltonian reduces to a tridiagonal3 3 3 matrix
similar to Eq. (2), where the diagonal terms give th
energies of the three possible charge states in the abse
of tunneling, and the terms nearest the diagonal are

p
2 t6

and
p

2 tp
6. This leads to an enhancement of the persiste

current on resonance by a factor of
p

2 compared to
Eq. (7), and an enhancement by a factor of 2 midw
between the two resonances. In such a system, the pa
of the persistent current is again invariant under char
transfer, as illustrated in Fig. 2(b).

The transfer of a single electronic charge from one r
gion of a mesoscopic conductor into another region of t
conductor can dramatically alter the mesoscopic prop
ties of the conductor. In this work we have taken th
persistent current as an example. We have emphasi
that the measurement of capacitance coefficientsCm and
CF provides an interesting possibility to characterize th
ground state of such closed systems. The charge tra
fer in quantum-coherent mesoscopic conductors or lar
molecules thus provides a very interesting future aven
of research.
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