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Charge Transfer Induced Persistent Current and Capacitance Oscillations
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The transfer of charge between different regions of a phase-coherent mesoscopic sample is
investigated. Charge transfer from a side branch quantum dot into a ring changes the persistent current
through a sequence of plateaus of diamagnetic and paramagnetic states. In contrast, a quantum dot
embedded in a ring exhibits sharp resonances in the persistent current, whose sign is independent of
the number of electrons in the dot if the total number of electrons in the system is even. It is shown
that such a mesoscopic system can be polarized appreciably not only by the application of an external
voltage but also via an Aharonov-Bohm flux.

PACS numbers: 73.20.Dx, 71.27.+a, 73.40.Gk

The transfer of a single electronic charge from oneby thetotal number of particles, which is invariant under
region of a mesoscopic conductor into another regiorcharge transfer, but depends explicitly on both the single-
of the conductor can dramatically alter the mesoscopiparticle potential and the interactions [6].
properties of the conductor. In this work, we take the For the ring of Fig. 1(b), the persistent current is sup-
persistent current of a ring [1-3] as a phase sensitivpressed by charging effects unless the conditions for res-
probe of the equilibrium state of the conductor andonant charge transfer are met, an effect analogous to the
investigate its properties under charge transfer. In Fig. 1Coulomb blockad@bserved in the conductance through
two samples are shown in which a ringlike structure isa quantum dot coupled to macroscopic leads [7—9]. The
penetrated by an Aharonov-Bohm (AB) fluk and is charge transfer discussed here should, however, be dis-
connected to a quantum dot. If the sample is broughtinguished from the standard discussions of the Coulomb
into an external capacitive circuit, it can be polarized;blockade [8], which treat charge transfer incoherently.
charge transfer from one portion of the sample intoHere we deal with coherent many-body states which are
the quantum dot can be induced. The charge transfeaxtended ovemultiple regions [10—12]. In contrast to
changes the potential landscape, and with it changehe sample of Fig. 1(a), we find for the ring of Fig. 1(b)
the phase-sensitive properties of the mesoscopic sampliat the sign of the persistent current contributed by each
Both the electrochemical capacitancg, = ed(Q)/dn  spin class isindependenbf the number of electrons in
and the flux-induced capacitanc®, = ed(Q)/d® are the dot. The parity of each spin class is conserved un-
periodic functions of the AB flux [4]. For the samples of der charge transfer, and is determined only by the total
Fig. 1, we find indeed very striking flux sensitive features
in these capacitance coefficients. Measurement of such (a)
capacitance coefficients provides an important alternative
to the difficult magnetization measurements [2] used to
characterize the ground state of mesoscopic samples.

A purely one-dimensional ring exhibits a persistent cur-
rent which is either diamagnetic or paramagnetic depend-
ing on the number of particles and their distribution over
the flux-sensitive states [5]. The persistent current is al-
ways an odd function of flux(®) = —I1(—®). Butthe
slope of the persistent curredt(®)/dd for a small flux
can be either negative (diamagnetic) or positive (paramag-
netic). To be brief, we say that a diamagnetic ground
state has a positive parity and a paramagnetic ground state
a negative parity. If we consider the contribution to the
persistent current of each spin class separately, then the
addition of a single electron changes the parity of its spin
class [5]. For the sample in Fig. 1(a), in which the dot
acts as a fully coherent reservoir of carriers, charge trans-
fer thus induces sharp transitions between plateaus of digq5 1 (a) Ring with Aharonov-Bohm flux coupled to a side

magnetic and paramagnetic states. However, the parity ®ranch quantum dot. (b) Quantum dot with leads closed into a
the composite dot-ring system is not simply determinedoop.
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number of electrons in the sample, regardless of whether -1.0
these electronic states are localized or whether the states
are extended and contribute to the persistent current [6]. o 00
The geometry of Fig. 1(a) has been the subject of S
Refs. [4,13]. A recent experiment [14] and theory [15]
investigated the AB effect of a quantum dot embedded 1.0
in a loop and connected to two leads. Here we treat -0.3
explicitly the capacitively couplectlosed structures and 15
analyze the charge response. o —0.2r Tl
The system of Fig. 1 is modeled in terms of a one- S 4 : ; 11100y
dimensional ring coupled capacitively and via tunneling to -0.1r | _ 1 1os
a quantum dot. The electron-electron interactions in the g '
system are treated using a capacitive charging model, as 0.0 b=t 45 Sl d0.0
indicated in Fig. 1: The system is coupled to two external -4 -3 -2 -1 0 1
metallic gates at voltage¥®; and V, with capacitance Qo/e

coefficientsC, and C,. In addition, the quantum dot FIG. 2. Persistent current and differential capacitance as a

couples to the ring with capacitand€ [= Cr + CL  function of the polarization chargg, = C,V for (a) the sam-
for the case shown in Fig. 1(b)]. With the combinedple of Fig. 1(a) withr = 0.5 and (b) the sample of Fig. 1(b)

capacitance€; ' = C;' + ¢;' andC = C, + C;, we  With 7x = 0.2 and 7, = 0.3. Each sample contains six elec-
can express the electrostatic Hamiltonian (which indUde%?ensSée;witg S)n/igoo;}l/‘:t; Eg?‘n 5 {h(ia Y ;r?dwigtr;]eri?lytl':se ﬁ;(g
the work done by the voltage sourc\ésandvz)fm terms  Tpe persistent current (solid curve) is expressed in units of
of th? charge operator for the d6t = >, df d,., @ ], = maxevr/L), whereL is the circumference of the ring,
polarization charg&®, = C.V, and the externally applied and the capacitance (dotted curve) is expressed in units of

voltageV =V, — Vi, (C./C)*e*/w. Each peak inC, corresponds to the transfer
of one electron from the dot to the ring.

He = (1/20)(Q — Q0)* — (C./2)V*. 1)

The total Hamiltonian for the systemi$ = Hy + Hr + cal Capacitancdj'u = —dzEO/dV2 of the systems of
Hc, where Hyg =D ,, eakc,;r(,ck(, + Y., €ndl, d,,  Figs. 1(a) and 1(b), respectively, as a function of the po-
describes the single-particle eigenstates in the rindarization chargeQ,. Here E, was evaluated computa-
and the dot, and the tunneling Hamiltonian istionally, with the single-particle energy levets, ande,,

Hr = Y40 (tind! cio + H.c). For the system of in the ring and dot and the tunneling matrix elememnts
Fig. 1(a), the AB flux modulates the single-particle modeled using a one-dimensional tight-binding model in
energy levelse,; in the ring, while for the system of which the dot was represented by two sites, and the ring
Fig. 1(b), the tunneling matrix elementg, connecting by four sites. The matrix element of the kinetic en-

the dot to the ring are flux dependenkl favors integer ergy operator between nearest-neighbor sites within the
charge states of the quantum dot [7-9], wherégs ring and the dot was taken to be unity, and the point con-
promotes hybridization of the localized states on the dotacts were modeled as weak links. For the case of three
with the extended states of the ring. Our Hamiltonianup-spin and three down-spin electrons, the persistent cur-
is similar to the Anderson model [16] for a magnetic rent of the quantum dot within the loop is diamagnetic,
impurity (or quantum dot [17]) coupled to a Fermi sea ofwhile the loop with a side branch quantum dot exhibits
conduction electrons, but here the reservoir of conductiom sequence of plateaus of diamagnetic and paramagnetic
electrons is itself a mesoscopic system with a finite levebtates. The four peaks @@, in Figs. 2(a) and 2(b), sep-
spacing and bandwidth. In order to account for thearated byAQ, ~ e, correspond to the successive transfer
tendency toward charge quantization in the systéfn, of electrons from the ring to the dot (for decreasifg,
must be treated nonperturbatively. We therefore emplof¥illing the four available single-particle states in the dot.
two complementary approaches: In the weak-tunneling In order to understand the character of the charge
limit, where hybridization occurs only between a singletransfer induced oscillations ih and C,,, it is useful to
state in the ring and in the dof can be reduced to a consider the limit;, < Ae, ¢?/C, where the dot and the

2 X 2 matrix 3 X 3 including spin), allowing for an ring are only weakly coupled. Then, in the vicinity of
explicit solution. This simple analytical solution correctly the charge transfer resonanée— N + 1, whereN is the
describes the interesting parity effects in the system. Thaumber of electrons in the dot, one need only consider the
ground state is also found exactly for arbitrary couplinghybridization of the highest occupied leyeM) in the ring

using a numerical Lanczos technique. with the lowest unoccupied levéd(N + 1)) in the dot.
Figures 2(a) and 2(b) show numerical results for theNeglecting spin (the effects of which will be considered
persistent current = —cdEy/d® and the electrochemi- further below), the Hamiltonian then reduces t@ x 2
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matrix, independent of the polarization chargly. This result
( ) is a consequence of the Friedel sum rule [15], which links
eN+Qy) . .
y, = | €M + —%c t the phase acquired by an electron traversing the system
" leW+D+Q,F J° to thetotal charge in the system, which is invariant under
t 2C - gein ystem, :
(2)  polarization. Equation (7) indicates that the peaks in the
plus an additive constant persistent current exhibit long non—Lorentzian tails away
M—1 N from resonance due to charge fluctuations on the quantum
E| = Z € + Z € — C.V2/2, (3) dot, as is evident in Fig. 2(b).
k=1 n=1 The charge on metallic gateis determined byQ, =
whereM + N is the total number of (spinless) electrons —dEo/dV. The electrochemical capacitance between
in the system. For the system of Fig. 1(b), the matrixgates 1 and 2 is thus,, = —d’Eo/dV?. From Eq. (6),
elements depends on the total number of nodés+  we find

*

€in+1) T

N — 1 in the wave functiondaM) and [d(N + 1)): its 2e2(C2/C?)|1+?
modulus squared is given by Cu—Co= Te(Qo — 0.)/CT +74|t+|2}3/2 )
It = 13 + 17 = 21pty COLR27D /D), (4)

where Co' = C;! + C;' is the classical series ca-

where the+ holds forM + N — 1 even, and the- holds  pacitance. The total change of the charge on gate 1

for M + N — 1 odd. Here®, = hc/e is the single- integrated over such a charge transfer resonance (exclud-

charge flux quantum, anck,, are energies proportional ing the contribution fromC) is |AQ.| = e(C,/C), cor-

to the transmission amplitudes through the two pointesponding to the transfer of one electron between ring

contacts. The hybridization of the localized state of theand dot. The quantum corrections @), reach a maxi-

dot with the extended state of the ring is a maximum wheminum of (eC,/2C)?/|t+| at Qo = Q., and are of order

the polarization charge takes the value Cllt<]/(e?/C.)T* far from resonance, decreasing faster
Q.= —e(N + 1/2) + (C/e)leay — €a+1y]. (5) than alLorentzian. The coherent backscattering in such

. . L . a phase-coherent system thus leads to a suppression of
Note that this is precisely the polarization charge Wh'Chcharge transfer away from resonands a visa system

would be needed to transfer an electron in the classicqlit, incoherent charge transfer, such as that studied by
approach to the Coglomb blockade. For this polarizationygpgoriet al. [18] or Lafargeet al. [19], which would be
charge, in the classical case, the energy has the form of & nected to exhibit Lorentzian peaks at zero temperature.

cusp. In the quantum mechanical case, the ground staig,a¢ js to say, coherence suppresses charge fluctuations
energy is a smooth function of the polarization charge, ¢ the typedQ = (Q — Ne), which contribute to the ca-

€M t EaN+1) e_2 pacitive response of the system, while enhancing charge

2 8C fluctuations of the typeSQ = ((Q%) — (Q)»)!/2, which
govern the persistent current. The parityrofdetermines
the phase of the AB effect ofi,,, which exhibits a phase
shift of 77 on resonance.

1{[e 2 2\1/2 Let us next briefly describe how the above results
B E([E (Qo — Q*)} + 4fr-] ) 2@ change for the loop with the side branch quantum dot.

Due to quantum mechanical tunneling, the energy barrielf the loop and the side dot are disconnected, the ring
is lower. Note that after transfer of an electron to theSupports flux dependent states with energies(®),
dot, the next hybridization will take place between thewhereas the dot supports flux independent states with
statela(M — 1)) of the ring and the statR/(N + 2)) of  energieseg,. Thus, for this system, we have a persistent
the dot. The total number of nodés/ — 1) + (N + current I(®) even in the absence of coupling to the
2) —2=M + N — 1, which determines the parity of dot. To take the Coulomb interaction into account in the

the system, is left invariant. Let us next explore a fewPresence of a weak coupling to the dot, we again need

E():El"‘

L Le +1/2) + QP
2C

consequences of this simple result. only consider the hybridization of the topmost electron in
Differentiating Eq. (6), one obtains the persistent cur-the ring with the lowest empty state in the dot. For the
rent for the sample of Fig. 1(b), energy of the topmost electron, this leads to an eigenvalue

. Arrtpty, SN2 D /Do) problem of the same form as Eq. (2), but now with
(D) = ¥— R'L > 0 e (D coupling matrix elementswhich are independent of flux.

i {le(Qo — 0:)/CP + 41|}V The total energy is of the same form as Eq. (6), except
The persistent current is a sharply peaked function ofhat the flux dependence is now determined by the states
the polarization charge, obtaining a maximum valueof the uncoupled ring.
of Inax = cd|t=|/0® at Qy = Q., and being of order The sensitivity of the persistent current to changes in
(e/h)[trtr/(e*/C)] far from resonance. The parity of the gate voltage can be characterized by the flux-induced
I(®) is determined by the matrix elememt, and is capacitance [4]Ce. This capacitance is measured in
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