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Resonant Photon-Assisted Tunneling through a Double Quantum Dot:
An Electron Pump from Spatial Rabi Oscillations
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The time average of the fully nonlinear current through a double quantum dot, subject to an arb
combination of ac and dc voltages, is calculated exactly using the Keldysh nonequilibrium G
function technique. When driven on resonance, the system functions as an efficient electron pum
to Rabi oscillation between the dots. The pumping current is maximum when the coupling to the
equals the Rabi frequency.

PACS numbers: 73.50.Pz, 73.20.Dx, 73.20.Jc, 73.40.Gk
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The spatial coherence of the electronic states in me
scopic systems is fundamental to understanding their
transport properties [1]. Recently, it has become po
sible to experimentally investigate coherent effects
time-dependent transport through mesoscopic systems
opening the possibility to study qualitatively new effect
which depend in a crucial way on the spatiotempor
coherence of the electronic states of a time-dependent s
tem [3]. While the phenomena of Ref. [2] found a natu
ral explanation within linear response theory [4], man
time-dependent phenomena, such as electron pumps
photon-assisted tunneling [6–12], and lasers [13], nec
sitate a nonlinear analysis.

In this Letter, we present a fully nonlinear treatmen
of a novel electron pump based on a spatiotemporal c
herence effect: Rabi oscillation between states of a do
ble quantum dot. The double dot system [9] is model
as two spatially separated nondegenerate electronic
bitals, each connected via a tunnel barrier to an electr
reservoir (Fig. 1). If the tunneling matrix elementw be-
tween the orbitals is small compared to their energy d
ferenceDe ­ e2 2 e1, the electrons are highly localized
on one orbital or the other, inhibiting transport. Howeve
if the system is driven at a frequency (or subharmoni
corresponding to the energy differencesDe2 1 4w2d1y2

between the time-independent eigenstates, the electr
become completely delocalized due to spatial Rabi osc
lations. If, as shown in Fig. 1, the reservoirs are bias
in such a way that one reservoir can donate electrons
the low-energy orbitalsmL . e1d and the other can accep
electrons from the high-energy orbitalsmR , e2d, the sys-
tem will then pump electrons uphill frommL to mR .

We employ the Keldysh nonequilibrium Green func
tion technique [14] to calculate the time-averaged curre
in response to an arbitrary combination of ac and dc dr
ing voltages, including finite coupling to the leads. Th
pumping current is found to be a maximum when the co
pling to the leads is equal to the Rabi frequency. Furthe
more, resonant features in the current are broadened
the coupling to the leads, implying that additional leve
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of the dot contribute only to a homogeneous backgrou
Importantly, these results for the double-dot system a
apply to transport through a double quantum well w
negligible interface scattering.

The Hamiltonian of the double-dot system can
expressed asHstd ­ Hdstd 1 Hr , where

Hdstd ­
2X

i­1

eistdd
y
i di 1 wsdy

2 d1 1 H.c.d

1 U12dy
1 d1dy

2 d2 , (1)

Hr ­
X

k,,[L,R

ek,cy
k, 1

X
k,,[

n
L,i­1

R,i­2

sVk,cy
k,di 1 H.c.d .

(2)

Here, dy
i creates an electron in theith quantum dot and

cy
k, creates an electron of momentumk in reservoir,.

For simplicity, spin is neglected and the external tim
dependence is applied only to the dots [15],ei0 std ­
s21di0sDe 1 V cosvtdy2. On each dot just one level i
active, so the static, on-site interactions can be absor
into De [16]. In contrast, the interdot interactionU12,
which is proportional to the interdot capacitance, can
be absorbed into the single-particle energies.

Before discussing transport in a system connected
leads, it is useful first to consider the eigenstates of
closed system of two quantum dots coupled capacitiv
to an ac voltage source, as described by Eq. (1). T
relevant eigenstates of a system such as (1), for wh

FIG. 1. Schematic diagram of the double-quantum-dot el
tron pump.
© 1996 The American Physical Society
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Hst 1 2pyvd ­ Hstd is a periodic function of time,
are the eigenstates of the one-period evolution oper
Ust 1 2pyv, td ­ T hexpf2siyh̄d

Rt12pyv
t dt0 Hst0dgj. For

the double-dot system, these states have the form [17]

c
sjd
i std ­ exps2iEjtyh̄dwsjd

i std , (3)

whereEj is thejth quasienergy, andw
sjd
i st 1 2pyvd ­

w
sjd
i std is a Floquet function whose componentsi ­ 1, 2

give the time-dependent amplitudes on the two quan
dots. The eigenvalue problem defined by Eqs. (1) a
(3) must in general be solved numerically [18] becau
fHstd, Hst0dg fi 0. However, in the experimentally inter
esting case of strongly localized dc eigenstates,w ø De,
Eqs. (1) and (3) can be solved analytically by expa
ing Ust, t0d to linear order inw: At the N-photon res-
onance,Nh̄v ­

p
De2 1 4w2 . De, one finds for the

quasienergies

E6 ­ Dey2 6 wJN sVyh̄vd , (4)

where JN is the Bessel function of orderN . For a
small detuningdv away from theN-photon resonance
the occupancy of dot 1 in stateE6 is jc

s6d
1 j2 ­ f1 1

sx 7
p

x2 1 1 d2g21, where x ­ h̄v sinspNdvyvdy
2pwJN sVyh̄vd. The quasienergy eigenstates are th
completely delocalized on resonancesjc s6d

1,2 j2 ­ 1y2d.
Qualitatively, the behavior near resonance forw ø De

can be understood in terms of the hybridization of the el
tronic orbital on one dot with theN th sideband of the elec
tronic orbital on the other dot (Fig. 2). For example, in t
voltage frame in whiche2 ­ De is independent of time
the energy spectrum of the first dot in the absence of tun
ing has peaks atE ­ Nh̄v with amplitudesJN sVyh̄vd, as
discussed in Refs. [6,14]. When the energy of one of th
sidebands coincides withe2, interdot tunneling will hy-
bridize the two orbitals into two delocalized combination
The effective coupling between orbitals is the product
tor
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FIG. 2. Exact quasienergies of two coupled quantum dots
detuninge2. Here e1 ­ V cosvt, with V ­ h̄v ­ 10w. Note
that the quasienergies are defined modsh̄vd. The electronic
states on the dots hybridize and split by.2wJN sVyh̄vd,
becoming delocalized, whene2 crosses theNth sideband ofe1.

w and the sideband amplitude, leading to the energy sp
ting in (4). An electron placed on one of the dots at re
onance will therefore oscillate back and forth between t
dots at the Rabi frequencyVRyh̄ ­ 2swyh̄dJN sVyh̄vd. It
should be emphasized that although the quasienergy st
are delocalized on resonance, their energy spectrum
mains spatially asymmetric, centered neare1 ­ 0 on dot 1
and neare2 ­ De on dot 2; the delocalized states must b
thought of as coherent superpositions of states of the c
pled electron-photon system.

The coupling of the double-dot system to the rese
voirs is characterized by the parametersGLyRsed ­
2p

P
k,,[LyR jVk,j

2dse 2 ek,d. In order to obtain an
analytic solution for the nonequilibrium time-dependen
transport, we first consider the case whereU12 ­ 0 and
GLsed ­ GRsed ­ G is independent of energy. The ex
pectation value of the particle current [19] through th
left barrier can then be expressed using the formalism
Ref. [14] as
on
xpressed
JLstd ­
22eG

h̄

Z t

2`
dt0

Z de

2p
Imhe2iest02tdfG,

11st, t0d 1 fLsedGr
11st, t0dgj , (5)

whereG,
ii0 st, t0d ; ikcy

i0 st0dcistdl andGr
ii0 st, t0d ; 2iust 2 t0d khcy

i0 st0d, cistdjl are Green functions describing propagati
within the double-dot system in the presence of coupling to the leads. The retarded Green function can be e
simply in terms of the quasienergy eigenstates asGr

ii0 st, t0d ­ 2iust 2 t0d expf2Gst 2 t0dy2g
P

j c
sjd
i stdc sjdp

i0 st0d. Given
Gr , the other Green functionG, can be determined via the Keldysh relation [14], which allows the time average ofJLstd
to be expressed in terms of the Fourier components of the Floquet functions as

J ­
eG

p h̄

" Z
de fLsed

X
j,n

Im

(
jw

sjd
1n j2

nh̄v 1 Ej 2 e 2 iGy2

)

2
G

2

X
,[L,R

Z
de f,sed

X
i0,j,j0

n,n0,m

w
sjdp
i0n w

sjd
1n0w

sj0dp
1,n01mw

sj0d
i0 ,n1m

snh̄v 1 Ej 2 e 2 iGy2d fsn 1 mdh̄v 1 Ej0 2 e 1 iGy2g

#
, (6)
ur-
.
se

d

where

w
sjd
i0n ­

v

2p

Z pyv

2pyv
dteinwtw

sjd
i0 std . (7)
Equation (6) is an exact result for the time-averaged c
rent atU12 ­ 0, valid for arbitrary gate and bias voltages

Figure 3 shows the time-averaged current for the ca
mL ­ mR ­ 0 for several ac driving voltages, calculate
1917
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FIG. 3. Time-averaged currentJ (in units of Jmax ­ eGy2h̄)
through a double quantum dot withe1 ­ 25, e2 ­ 5, G ­ 0.5,
and ac amplitudeV ­ 2, 4, 6 (increasingJ). Energies are given
in units of w, the tunneling matrix element between the do
With mL ­ mR ­ 0, the system functions as an electron pum
due to coherentN-photon-assisted tunneling, with resonanc
at vN ­ sDe2 1 4w2d1y2yN h̄. Inset: time-averaged current a
the one-photon resonancev ­ v1 vs dc biasmL, with V ­ 6.
Solid curve: U12 ­ 0, G ­ 0.05, kBT ­ 0; dotted curve:U12 ­
2, kBT ­ 0.05 ¿ G. The jumps, of width maxskBT , Gd, of J at
E6 andE6 1 U12 allow one to resolve the Rabi splittingjE1 2
E2j . 2wJ1sVyh̄vd ­ 0.563 and the interdot interactionU12.

via Eq. (6) in the limit of zero temperature. A serie
of peaks inJ, occurring at the frequenciesvN ­ sDe2 1

4w2d1y2yNh̄ corresponding to the delocalization trans
tions, is evident. At theN th peak, the dc current flows in
response to resonantN-photon-assisted tunneling: Whe
the electron is on dot 1, it has an energy.2Dey2 , mL,
and cannot tunnel into reservoirL. In performing a Rabi
oscillation to dot 2, the electron absorbsN photons, giving
it an energy.2Dey2 1 Nh̄v . Dey2 . mR; the electron
e
y

r-

o

o

h

1918
.

s

-

can thus tunnel from dot 2 to reservoirR. Subsequently,
another electron can tunnel from reservoirL onto dot 1
and the process is repeated, leading to a dc current.
U12 ­ 0, each of the two delocalized quasienergy sta
contributes independently to this current. Consequen
one can resolve the Rabi splitting between these state
sweeping one of the chemical potentials while keepinge1,2
fixed. For example, the inset to Fig. 3 (solid curve) sho
jumps of widthG in J whenmL crosses the two quasiene
gies for the 1-photon resonance of the system. The spa
dmL between the two jumps is equal to the Rabi splitti
VR . 2wJ1sVyh̄vd.

For U12 . 0, the two quasienergy states are no long
independent, and the time-dependent transport can
longer be solved exactly. However, one can still calcul
J in the limit G ø VR using a rate-equation approac
[20], and the results forU12 ­ 2 are shown for compari-
son as a dotted curve in the inset to Fig. 3. The curr
at the one-photon resonance is now reduced by1y3 for
E1 , mL , U12 1 E2 due to the inability to populate
both quasienergy states simultaneously. There is als
second series of jumps inJ whenmL crosses the thresh
oldsE6 1 U12 to inject electrons into stateE6 when state
E7 is occupied. Thus both the Rabi splitting and the
terdot interaction can be resolved by examining theI-V
characteristic of the electron pump.

In order to understand the heights and widths of the r
onances inJ, it is useful to consider the limit of strongly
localized orbitalsw ø De with weak drivingV ø h̄v,
so that only resonant processes contribute to the curr
Using Eqs. (4) and (6) at zero temperature and the
that the quasienergy eigenstates are completely delo
ized on resonance, one obtains the time-averaged cu
at theN-photon resonance forU12 ­ 0,
Jres ­
eG

2h

√
V

2
R

V
2
R 1 G2

! X
s­61

"
tan21

√
mL 2 e1 1 sVRy2

Gy2

!
2 tan21

√
mR 2 e2 1 sVRy2

Gy2

!

1
sG

2VR
ln

√
smL 2 e1 1 sVRy2d2 1 sGy2d2

smR 2 e2 1 sVRy2d2 1 sGy2d2

!#
. (8)
ces

he
e

-
n is
abi

e

Equation (8) shows explicitly that each of the two d
localized quasienergy states contributes independentl
the resonant current. ForG ø VR , the logarithmic term
in Eq. (8) is negligible, and the arctangents jump rapid
from 2py2 to py2 whenmL,R cross one of the quasiene
gies, leading to the sharp jumps inJ shown in the inset
to Fig. 3. Equation (8) predicts thatJres is not a mono-
tonically increasing function of the ac amplitudeV , but
reaches a maximum forV , De, then decreases, due t
the oscillatory character of the Bessel function inVR .
This behavior is borne out in the exact solution. Thein-
hibition of transport at large ac amplitudes is one featu
which distinguishes true photon-assisted tunneling fr
adiabatic electron transfer [5].

It is instructive to consider several limits of Eq. (8) wit
regard to the coupling to the leadsG. For mL 2 e1 2
-
to

ly

re
m

U12, e2 2 mR ¿ G, one finds

Jres ­ seGy2h̄d V2
RysV2

R 1 G2d . (9)

For G ø VR, Jres ­ eGy2h̄, which is the largest current
possible for couplingG and signifies thatno electrons tra-
verse the system in the opposite direction; the resonan
in J have an intrinsic width ofdvFWHM ­ 2VRyNh̄.
J res obtains a maximum ofeVRy4h̄ when the tunneling
rate to the leads is equal to the Rabi frequency. In t
limit G ¿ VR, Jres . eV

2
Ry2h̄G and the resonances ar

broadened in energy byG (and hence in frequency by
dvFWHM ­ GyNh̄). In this limit, the photon-assisted tun
neling is incoherent because the phase of the electro
randomized on a time scale short compared to the R
oscillations. It is only in this limit,G ¿ VR , that J can
be calculated via Fermi’s golden rule using the lifetim
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broadened density of states of theN th sideband, as in the
original calculation of Tien and Gordon [6]. Equation (9
also implies that forV , h̄v the current at very high-
order resonances is exponentially suppressed compare
the current at the one-photon resonance, becauseVR ,
JN sxd , sxy2dNyN!. One can therefore generally neglec
additional energy orbitals within each quantum dot, sin
even when in resonance the contribution to the current
an orbital spread byDE will be exponentially small in
N ­ DEyh̄v.

We find that the resonances inJ are not broad-
ened at finite temperatures, providedkBT ø minjm, 2

Ejj. A similar phenomenon in dc resonant tunnelin
through a double quantum dot was recently observed
van der Vaartet al. [21], underlining the analogy between
resonant photon-assisted tunneling between nondege
ate orbitals and dc resonant tunneling through degene
hybridized orbitals.

The efficiencyE ­ sJDmyedyspower absorbedd of the
electron pump is similarly not degraded at finite tempe
ature. Neglecting external losses, the maximal efficien
(obtained asDm ! De) is E ­ 1 2 O swyDed2 asG !

0. The near ideal efficiency stems from the coherent ch
acter of photon-assisted tunneling in this system, whe
resonant absorption necessarily involves charge trans
Other electron pumps based on adiabatic electron tran
[5], photon-assisted tunneling in single dots [7–9], or i
trawell optical excitation [10] do not share this feature.

Our results for the double-dot system can also be a
plied to vertical transport through double quantum wel
If interface scattering is negligible, each transverse mo
is independent and can be modeled by the same Ham
tonian used for the double-dot system. A mode of tran
verse momentumk' will contribute a current on res-
onance given by Eq. (8) withei ! eis0d 1 h̄2k2

'y2mp,
where mp is the effective mass. Integrating over tran
verse modes, including spin, one obtains, in the lim
mL 2 e1s0d, e2s0d 2 mR ¿ G,

J2D ­
eG

2h̄

√
V

2
R

V
2
R 1 G2

!
AmpfmL 2 e1s0dg

p h̄2 , (10)

where A is the area of the 2D electron gas. Such a
electron pump has recently been experimentally realiz
by Drexler et al. [11], and an analogous effect observe
in a multiple-quantum-well structure by Keayet al. [12].

In conclusion, we have obtained an exact solution f
the time average of the fully nonlinear current drive
through two quantum dots, each coupled to an electr
reservoir. The system is found to function as an electr
pump capable of transporting electrons up a poten
gradient via resonant photon-assisted tunneling. T
pumping current is maximized when the coupling to th
leadsG equals the Rabi frequencyVR . Sharp jumps are
predicted in the pumpI-V characteristic which directly
reveal both the Rabi splitting and the interdot Coulom
energy. These results also apply to transport throu
double quantum wells with negligible interface scatterin
)
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Note added.—After submission of this manuscript
we became aware of independent work of Stoof a
Nazarov [22], who use a complementary technique
investigate the caseU12 ­ ` in the limit of large bias,
and of previous work by Sumetskiǐ and Fel’shtyn [23]
on resonant inelastic tunneling through a double quant
well, who independently derived Eq. (10).
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