RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 58, NUMBER 4 15 JULY 1998-II

Correlated charge polarization in a chain of coupled quantum dots
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Coherent charge transfer in a linear array of tunnel-coupled quantum dots, electrostatically coupled to
external gates, is investigated using the Bethe ansatz for a symmetrically biased Hubbard chain. Charge
polarization in this correlated system is shown to proceed via two distinct processes: formation of bound states
in the metallic phase, and charge-transfer processes corresponding to a superposition of antibound states at
opposite ends of the chain in the Mott-insulating phase. The polarizability in the insulating phase of the chain
exhibits a universal scaling behavior, while the polarization charge in the metallic phase of the model is shown
to be quantized in units of/2. [S0163-182108)52228-X]

Tunneling of a single electron from one region to another We consider a closed linear system of quantum dots
in a mesoscopic system leads to a modification of the dielecsoupled electrostatically to bias gates and a backdfit
tric response of the systérthat can be detected via single- 1). The backgate allows the system to be charged With
electron capacitance spectroscépg.apacitance measure- €XCess electrons, this excess charge being shared among the

ments allow one to study charge transfeequilibrium and dots in the chain by quantum-mechanical tunneling. We de-
thus provide an important alternative to transportScrlbe 1th's coupled quantum dot chain by the Hubbard
measurements® in brobing the effects of coherent tunnel- model! in the experimentally accessible limit when the in-

. . prooing 1t o terdot capacitances are negligible compared to the capaci-
ing. In this paper, we investigate the charge polarization of 'i‘ancesc to the external gates. The Hamiltonian of the sys-
linear array of tunnel-coupled quantum dots embedded becem mcludmg the work done by the external voltage
tween the plates of a capacit@fig. 1). The quantum correc- gources, is

tions to the classical two-terminal capacitance of the system L-1 Ut

are shown to exhibit sharp resonances whose structure re- H=—t> 2 (¢l 1,Ciy+H. c)+ — 2 p?—CoV2I2
veals directly the spatial correlations of the interacting many- o

body ground state of the system. We find that the localized

character of the many-body states in the Mott-insulating +7(p|_—pl), (D)

phase of the model leads to extremely sharp capacitance

resonances, which obey a universal scaling form analogous T Pt e e e
to the conductivity of the systefmOn the other hand, the 1.0F ! ! -
extended quantum states in the metallic phase of the model I i i ]
are shown to lead to fractional charge transfer in some re- 0.8 i ,, 4 i_U/t:lO_‘
gimes of electron density, in contrast to the integer charge ) I “ G ‘11 § “ ]
transfer predicted in Ref. 1. & . z lo--nl z

The integrability of one-dimensionélD) quantum many- | 0.6 :ﬁig ¥ L] ]
body systems with open boundary conditions was first :-NEE' ] L il
establishedi for the one-dimensional Hubbard model. The © 0.4 NZ1 i L i ]
Bethe ansatz solution was recently extended to include — “ ”
boundary potential$and the spectrum of bound states for a 02r “ A ” 3
single attractive boundary potential has very recently been : i =
investigated® Here, we investigate a Hubbard chain with 0.0 Lazi™Sinad \A NP5 8s
equal and opposite boundary potentials at each end, which -20 -10 0 10 20
serves as a model of a capacitively biased 1D array of quan-
tum dots. In addition to the bound states found for the case of eV/t

a single boundary potenti&l,we find charge-transfer states,  FiG. 1. The quantum corrections to the capacitance plotted in
which are quantum-mechanical superpositions of antiboungnits of e?/t of a chain of four quantum dots as a function of the
states at opposite ends of the chain. These charge-transigigs voltagev. The number of excess electrons in the chain and the
states are shown to dominate the polarizability in the Mott-interaction strength are as indicated in a legend. Inset: The equiva-
insulating phase of the model. lent circuit of the quantum dot array under study.
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TABLE I. Complex roots of Eqs(4) and(5) (with exponential accuracy ds—«) corresponding to the
bound and antibound states present in the ground state oflEcas a function of the bia¥. HereeV;
=U/2+[(U/2)?+4t?]¥2 andeV,=U+[U?+4t?]*2 In the insulating phase of the modél€L), polar-
ization of the system proceeds via transfer of the antibound lstatefrom one end of the array to the other
at the boundary of regions | and II. In the metallic phase, polarization of the system proceeds via the
successive trapping of electrons on the boundary dot with attractive potential at the onset of regions | and III.

2t/le<V<V, V,<V<V, V>V,
k. =i In(eVi2t) k. =i In(eVi2t) k. =i In(eVi2t)
N=L Kk _;=7—iInE€V2t) Kk _;=a+isinh (i sink +U/2t) Kk _,=—i sinh (i sink_+U/2t)
Am=sink —iU/4t Ay =sink —iU/4t
kn=1 In(eV2t) ky=1i In(eVi2t) ky=i In(eV2t)
N<L Am=sinky—iU/4t Kn_1=—1i sinh (i sinky+U/2t)

Ay =Sinky—iU/4t

where ¢! creates an electron of spir on dot i, p; perature, the expectation value of the polarization charge is

=3¢l ci,, U=€%Cy is the charging energy of a quantum given by

dot, andC, is the classical geometrical capacitance between

the left and right gates. Equatidf) can be considered as a (QY=(Q_—Qr)2=—JdEy/dV, 2
phenomenological Hamiltonian to describe, e.g., collective

effects in a linear array of coherently coupled quantum whereQ_ (Qg) is the polarization charge on the Iéfight)
dots, which are electrostatically defined in a two-dimensionatapacitor plate anf, is the minimum eigenvalue of E(L).
electron gas by means of metallic gates on top of arhe two-terminal capacitance of the device is defined as
GaAs/ALGa,_,As heterostructur&: Here we consider only C,=—d?E,/dV2 These quantities can be exactly obtained
the single electronic orbital in each quantum dot that liedfor the quantum dot chain using the Bethe ansatz technique,
nearest the Fermi energy. This approximation should bes described beloW.

adequatt to describe collective charging effects in the re- The eigenvalues of Eq1) may be expressed as

gime where the interdot conductanGe< e?/h. Equation(1)

is the prototypical minimal model of correlated fermions on N

a lattice, and describes, e.g., the correlation-induced metal- E=—2t2 coskj—C0V2/2, 3
insulator transitiorf. The new feature investigated here is the =1

nonperturbative effect of the external biag) (described by -

the last term in Eq(1), which polarizes the system. Unlike where the pseudomomemgarg a set oN distinct numbers
previous investigations of the charge response of thdhat satisfy the coupled equations

system’ we do not treat the bia¥ as a weak perturbation, _

but consider arbitrarily large values f leading to a finite  Sv(kj)e'#i(-*P

transfer of charge across the chain. The polarization charge M dink iU/t sin k U/
Q induced on the external capacitor plates characterizes the _ sin J_)‘B’Lf t sin J+)‘ﬁ+! t @)
measurable dielectric response of the system. At zero tem- =1 Sinkj—Ag—iU/4t sink;+Ag—iU/4t’
|
1'_“[ No—Sinkj+iU/at N, +sinkj+iU/Mt 0T N~ Ng iUt N, A iU/t .
No—SINK;—1UA N, T sink— UM g2aj—1 Ng—Ns—iUJ2t Nyt Ag—iU/2L" ®)

1=1

where\,, a=1,... M are a set of distinct numbers referred values ofN. The polarization induced by the external bias

to as spin rapidities, and leads to a transfer of charge across the system, which is
reflected in the appearance of complex roots of the Bethe
1—(eVi2t)%e 2K ansatz equations, corresponding to bound and antibound

Svikj)= 1—(eVi2t)%e% (6)  states on the boundary ddtee Table)l Let us first consider

the Mott-insulating phase of the system, which octlt$or
is the single-electron scattering matrix associated with theéommensurate electron density=L. For low bias eV
boundary potentials. <2t, the Bethe ansatz ground state contains only real
The capacitive response of a chain of four quantum dotspseudomomenta, and the charge distribution remains essen-
calculated from Eqs(2)—(6), is shown in Fig. 1 for several tially symmetric. For 2<eV=<U, a bound state forms on
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the leftmost dot, characterized by the complex pseudomo- LOF
mentumk, . However, due to the incompressibility of the
Mott insulator, an antibound state on the rightmost dot is also
filled (k__4), and there is thus no net transfer of charge. The
Mott-Hubbard gap is reflected in the suppression of the low-
bias capacitancé&he dash-triple-dotted curve in Fig).XFor

a bias larger than the Mott-Hubbard gap, however, it be-
comes energetically favorable to depopulate the antibound
state on the rightmost dot and populate an antibound state in
the upper Hubbard band on the leftmost dgion Il in i
Table ). The pseudomomentum of this antibound state con- 0.0k

e e
=3 =)
—

ic,‘_co; / icp._cﬂgmlx
e
o

.
--------

tributes — 2t cosk__;=[(U—eV2)*+4t?]">~U—eV/2 to 20.15 —0.10 -0.05 -0.00 0.05 040 0.5
the ground-state energy in E@3) (plus small backflow Vmex = V] ({C, = Colmas/®)

term9, indicating the presence of a second electron on the 0 : : : : : —
leftmost dot. The resulting transfer of an electron across the (b) 3
array leads to a sharp capacitance resonanceVateV, -1F
=U in Fig. 1. Finally, forev>eV,=2U, this antibound = : E
state becomes a bound state. ~

In order to elucidate the nature of the charge-transfer g
resonance in the Mott insulator, let us first consider the sim- =
plest caseL =2, for which Eq.(1) reduces to a simple 4 = : ]
X4 matrix. The polarization charge and capacitance may —5E 3
then be obtained directineglecting terms of ordett{U)?], : E

Q-CV 1 1  ev-U c. 12 5 4 5 6

9.2 FIG. 2. (a) The charge transfer-induced resonant capacitance
C —Co= 4et ®) peaks for Mott-insulating chains of two, four, and eight di®t-
koFOT8t2+ (U—e V)2 ted as indicated in a legepdvarying by several orders of magni-
. . tude in height and width, are shown to collapse on the rescaled
Equationg7) and(8) predict a charge transfer efacross the capacitance peak given by E¢®) (solid line). (b) The effective

chain and a capacitance peakeat=U. Equation(8) was  coupling t.; between the boundary dots of the Mott-insulating
obtained previously in Ref. 1, where it was shown to de-|.qot chains is plotted fot)/t=6, 7, 8, 9, and 10. The solid line
scribe charge transfer between two arbitrary mesoscopic Sygith slope minus unity is shown to emphasize the scaling of the
tems coupled weakly by tunneling. Following the above ar-data given by Eq(9).

gument on the nature of charge transfer in the Mott insulator,

one may expect a result analogous to E&). to hold for ) )

larger chains as well, since the effective coupling of thefact related to the equal-time Green’s functipg=tG(1.L)
boundary dots via the intervening Mott insulator should de-=tZ(0|c],CL,|0), and it has already been argletiat G
crease exponentially with system size. Indeed, the capachas the same scaling form as the conductivity for another
tance peaks aV=U are found to become increasingly high choice of boundary conditions. Dielectric measurements thus
and narrow(the area, which corresponds to the total charggpresent the intriguing possibility to study experimentally the
transferred, is conserveds L increases, but their shape is correlation length of a Mott insulator formed in a coherent
found to be described very well by E€B), with t replaced system of quantum dots.

by an effective charge-transfer matrix elemegt, as shown While the charge-transfer resonances in the Mott-
in Fig. 2(a). Fitting the calculated capacitance to E8), the insulating phase of the model can be described by the theory
effective charge-transfer matrix element is found to have thef Ref. 1, it is evident from Fig. 1 that the capacitance in the
form metallic phase of the model, which may exhibit a low-bias
double peak structure, cannot in general be described by an
equation of the form of Eq(8). As shown in Fig. 3, this

as shown in Fig. @), where the correlation lengthin the ~ double peak structure in the dilute metallic phase of the sys-

Mott-insulating phase of the 1D Hubbard model is giveR by €M is accentuated with increasing system size, and corre-
sponds to a polarization charge with well-defined plateaus

to=te(L2VEUM

= In(y++y*—1) quantized in units o&/2, unlike the integer charge transfer
UeWIY = L dyW- (100 described by Eq(7). From Table I, we see that the polariza-

tion of the system in the metallic phase proceeds via the
Equation(9) indicates that the effective charge-transfer ma-successive capture by the boundary dot of electrons from the
trix element, which characterizes the resonant polarizability-uttinger liquid states delocalized along the chéince the
of the Mott insulator, exhibits a finite-size scaling analogousantibound states are empty fof<L), the first ateV=2t
to the conductivity of the system, which also decreases exand the second &tVV=eV,=2U. The breakdown of Eq%$7)
ponentially with system size in the Mott insulafor.; is in ~ and (8) is due to the fact that the system can no longer be
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1.07 ' ' ' = near zero bias is suppressed. On the other hand, for
A 1—N/L<1, the system behaves like a dilute gasiofons’

the charge excitations of the strongly correlated Mott insula-

tor, and the reappearance of the charge plateau near zero bias

can be understood in terms of the trapping of holons by the

boundary potentials.

Let us comment on some of the idealizations employed in
the above calculation. The introduction of an interdot capaci-
tance, neglected in Eql), leads to longer ranged site-off-
diagonal interactions in the array, and a smoother distribu-
tion of the externally applied voltage drop. Such an extended
Hubbard model is no longer integrable via the Bethe
ansatz technique, but Lanczos direct diagonalization
investigation®® indicate that the physics is qualitatively

FIG. 3. Quantum correction to the polarization charge inducedSlmllar to that desprlbed here. Dlsordgr, neglecj[ed in the
on the external capacitor plates versus bias voltage for a HubbarB_resent treatm_ent, is not found to mod_lfy our mz_;un conclu-
chain of quantum dots in the metallic phasé<(L). Note thatQ is ~ SIONS, as confirmed by our Lanczos investigatithghe

quantized in units ok/2 (N<L or N<L) reflecting a fractional ~Sc¢aling form of the capacitan¢&gs.(8) and(9)] in the Mott
(el2) charge transfer within the chain. insulating phase of the system is preserved provided the dis-

order is not sufficiently strong to lead to a compressible state,

although the correlation lengthis found to depend on dis-

divided (ljn_to IJQUS{C'( iwob Wgakly gobupled subsystenr":s, as Wﬁ?rder. Similarly, the fractional polarization charge plateaus
assumed in Ret. 1, but instead becomes one coherent Wholg ., in Fig. 3 are robust with respect to disorder, though

in the metallllc ph_ase. o . the voltage bias of the steps may be shifted. We also remark
. The fra}ct|onal increments of polarlzanon charge shown Mthat for temperature&zT much larger than the effective
Fig. 3 arise because the trapping of an electron from th harge-transfer matrix element, the form of the capacitance

gapless quf’intum states in the central part of the array lea Saks given in Eq8) and Fig. 3 will be replaced by a simple
to an effective charge transfer over only half the system. Du erivative of the Fermi function. of widtkeT: however. the
to the breaking of particle-hole symmetry in the metallic ’ B j

. ak positions can still be used to distinguish between me-
phase of the model, the formation of a bound state at one erf llic ;nd Mott-insulating behavior g
of the array need not occur at the same bias voltage as the In conclusion, we have investigated coherent charge
formation of an antibound state at the other end of the arrayg ’

th larizati h the first anth dot th nsfer in a strongly correlated artificial linear molecule of
€ polarization charges on the Tirst ots are there- tunnel-coupled quantum dots. The polarizability in the Mott-
fore no longer equal and opposite in the metallic phase,

h in the Mott-insulati h A in Fi jnsulating phase of the system was found to exhibit a univer-

)[/;/]as he cas? mt' € I'O t—_lnsu ating p as;. S seen ”; '?' al scaling form analogous to the conductivity of the system,

€ charge Iractionalization near z€ro bias occurs 10r 10w, e the polarization charge in the dilute metallic phase of
electron densitiesN/L<1) or for a small density of holes in

; . : - the system was found to be quantized in uniteff. Equi-
the Mott insulator (1_.N/.L<1)' For intermediate densmes, librium charge-transfer measurements present an intriguing
the plateau at zero bias is suppres&ak curve foN=16 in

. SRS alternative to transport measurements to characterize the
Fig. 3. ForN=1, the physics is simple: From Table l. We glectronic states of ultrasmall structures. We believe that ca-
see that the electron becomes bound at opposite ends of i€ j1ance measurements carried out in carefully fabricated
array forev= £ 2t; for eV<2t, the polarization of the sys- g .antum dot chains should be able to observe the charge-
tem is negligible, leading to a plateau in the polarizationyansfer resonances and the universal scaling behavior as

charge(Q). For a dilute system Wmﬁ*@-’ this qualitative \ye)| as the metallic charge fractionalization phenomenon
picture remains trugsee curve foN=4 in Fig. 3, but for predicted here.

intermediate densitieésee curve folN=16 in Fig. 3 this
single-particle picture breaks down and the charge plateau This work was supported by the US-ONR.
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