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Correlated charge polarization in a chain of coupled quantum dots
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Coherent charge transfer in a linear array of tunnel-coupled quantum dots, electrostatically coupled to
external gates, is investigated using the Bethe ansatz for a symmetrically biased Hubbard chain. Charge
polarization in this correlated system is shown to proceed via two distinct processes: formation of bound states
in the metallic phase, and charge-transfer processes corresponding to a superposition of antibound states at
opposite ends of the chain in the Mott-insulating phase. The polarizability in the insulating phase of the chain
exhibits a universal scaling behavior, while the polarization charge in the metallic phase of the model is shown
to be quantized in units ofe/2. @S0163-1829~98!52228-X#
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Tunneling of a single electron from one region to anoth
in a mesoscopic system leads to a modification of the die
tric response of the system1 that can be detected via single
electron capacitance spectroscopy.2 Capacitance measure
ments allow one to study charge transferin equilibrium, and
thus provide an important alternative to transp
measurements3–6 in probing the effects of coherent tunne
ing. In this paper, we investigate the charge polarization o
linear array of tunnel-coupled quantum dots embedded
tween the plates of a capacitor~Fig. 1!. The quantum correc
tions to the classical two-terminal capacitance of the sys
are shown to exhibit sharp resonances whose structure
veals directly the spatial correlations of the interacting ma
body ground state of the system. We find that the locali
character of the many-body states in the Mott-insulat
phase of the model leads to extremely sharp capacita
resonances, which obey a universal scaling form analog
to the conductivity of the system.7 On the other hand, the
extended quantum states in the metallic phase of the m
are shown to lead to fractional charge transfer in some
gimes of electron density, in contrast to the integer cha
transfer predicted in Ref. 1.

The integrability of one-dimensional~1D! quantum many-
body systems with open boundary conditions was fi
established8 for the one-dimensional Hubbard model. Th
Bethe ansatz solution was recently extended to incl
boundary potentials,9 and the spectrum of bound states for
single attractive boundary potential has very recently b
investigated.10 Here, we investigate a Hubbard chain wi
equal and opposite boundary potentials at each end, w
serves as a model of a capacitively biased 1D array of qu
tum dots. In addition to the bound states found for the cas
a single boundary potential,10 we find charge-transfer state
which are quantum-mechanical superpositions of antibo
states at opposite ends of the chain. These charge-tra
states are shown to dominate the polarizability in the Mo
insulating phase of the model.
PRB 580163-1829/98/58~4!/1746~4!/$15.00
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We consider a closed linear system of quantum d
coupled electrostatically to bias gates and a backgate~Fig.
1!. The backgate allows the system to be charged withN
excess electrons, this excess charge being shared amon
dots in the chain by quantum-mechanical tunneling. We
scribe this coupled quantum dot chain by the Hubb
model11 in the experimentally accessible limit when the i
terdot capacitances are negligible compared to the cap
tancesCg to the external gates. The Hamiltonian of the sy
tem, including the work done by the external volta
sources, is

H52t(
s

(
i 51

L21

~ci 11s
† cis1H.c.!1

U

2 (
i 51

L

r i
22C0V2/2

1
eV

2
~rL2r1!, ~1!

FIG. 1. The quantum corrections to the capacitance plotted
units of e2/t of a chain of four quantum dots as a function of th
bias voltageV. The number of excess electrons in the chain and
interaction strength are as indicated in a legend. Inset: The equ
lent circuit of the quantum dot array under study.
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TABLE I. Complex roots of Eqs.~4! and~5! ~with exponential accuracy asL→`) corresponding to the
bound and antibound states present in the ground state of Eq.~1!, as a function of the biasV. HereeV1

5U/21@(U/2)214t2#1/2 andeV25U1@U214t2#1/2. In the insulating phase of the model (N5L), polar-
ization of the system proceeds via transfer of the antibound statekL21 from one end of the array to the othe
at the boundary of regions I and II. In the metallic phase, polarization of the system proceeds v
successive trapping of electrons on the boundary dot with attractive potential at the onset of regions I

I II III

2t/e,V,V1 V1,V,V2 V.V2

kL5 i ln(eV/2t) kL5 i ln(eV/2t) kL5 i ln(eV/2t)
N5L kL215p2 i ln(eV/2t) kL215p1 i sin h21( i sinkL1U/2t) kL2152 i sin h21( i sinkL1U/2t)

lM5sinkL2iU/4t lM5sinkL2iU/4t

kN5 i ln(eV/2t) kN5 i ln(eV/2t) kN5 i ln(eV/2t)
N,L lM5sinkN2iU/4t kN2152 i sin h21( i sinkN1U/2t)

lM5sinkN2iU/4t
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where cis
† creates an electron of spins on dot i , r i

5(scis
† cis , U5e2/Cg is the charging energy of a quantu

dot, andC0 is the classical geometrical capacitance betw
the left and right gates. Equation~1! can be considered as
phenomenological Hamiltonian to describe, e.g., collect
effects in a linear array ofL coherently coupled quantum
dots, which are electrostatically defined in a two-dimensio
electron gas by means of metallic gates on top o
GaAs/AlxGa12xAs heterostructure.11 Here we consider only
the single electronic orbital in each quantum dot that l
nearest the Fermi energy. This approximation should
adequate11 to describe collective charging effects in the r
gime where the interdot conductanceG,e2/h. Equation~1!
is the prototypical minimal model of correlated fermions
a lattice, and describes, e.g., the correlation-induced me
insulator transition.7 The new feature investigated here is t
nonperturbative effect of the external bias (V) described by
the last term in Eq.~1!, which polarizes the system. Unlik
previous investigations of the charge response of
system,7 we do not treat the biasV as a weak perturbation
but consider arbitrarily large values ofV, leading to a finite
transfer of charge across the chain. The polarization cha
Q induced on the external capacitor plates characterizes
measurable dielectric response of the system. At zero t
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perature, the expectation value of the polarization charg
given by

^Q&5^QL2QR&/252]E0 /]V, ~2!

whereQL (QR) is the polarization charge on the left~right!
capacitor plate andE0 is the minimum eigenvalue of Eq.~1!.
The two-terminal capacitance of the device is defined
Cm52]2E0 /]V2. These quantities can be exactly obtain
for the quantum dot chain using the Bethe ansatz techniq
as described below.12

The eigenvalues of Eq.~1! may be expressed as

E522t(
j 51

N

coskj2C0V2/2, ~3!

where the pseudomomentakj are a set ofN distinct numbers
that satisfy the coupled equations

SV~kj !e
i2kj ~L11!

5 )
b51

M
sin kj2lb1 iU /4t

sin kj2lb2 iU /4t

sin kj1lb1 iU /4t

sin kj1lb2 iU /4t
, ~4!
)
j 51

N
la2sin kj1 iU /4t

la2sin kj2 iU /4t

la1sin kj1 iU /4t

la1sin kj2 iU /4t
5 )

b~Þa!51

M
la2lb1 iU /2t

la2lb2 iU /2t

la1lb1 iU /2t

la1lb2 iU /2t
, ~5!
h is
the
und

eal
sen-
wherela , a51,...,M are a set of distinct numbers referre
to as spin rapidities, and

SV~kj !5
12~eV/2t !2e22ik j

12~eV/2t !2e2ik j
~6!

is the single-electron scattering matrix associated with
boundary potentials.

The capacitive response of a chain of four quantum d
calculated from Eqs.~2!–~6!, is shown in Fig. 1 for severa
e

s,

values ofN. The polarization induced by the external biasV
leads to a transfer of charge across the system, whic
reflected in the appearance of complex roots of the Be
ansatz equations, corresponding to bound and antibo
states on the boundary dots~see Table I!. Let us first consider
the Mott-insulating phase of the system, which occurs7,11 for
commensurate electron densityN5L. For low bias eV
,2t, the Bethe ansatz ground state contains only r
pseudomomenta, and the charge distribution remains es
tially symmetric. For 2t,eV&U, a bound state forms on
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the leftmost dot, characterized by the complex pseudo
mentumkL . However, due to the incompressibility of th
Mott insulator, an antibound state on the rightmost dot is a
filled (kL21), and there is thus no net transfer of charge. T
Mott-Hubbard gap is reflected in the suppression of the lo
bias capacitance~the dash-triple-dotted curve in Fig. 1!. For
a bias larger than the Mott-Hubbard gap, however, it
comes energetically favorable to depopulate the antibo
state on the rightmost dot and populate an antibound sta
the upper Hubbard band on the leftmost dot~region II in
Table I!. The pseudomomentum of this antibound state c
tributes 22t coskL215@(U2eV/2)214t2#1/2.U2eV/2 to
the ground-state energy in Eq.~3! ~plus small backflow
terms!, indicating the presence of a second electron on
leftmost dot. The resulting transfer of an electron across
array leads to a sharp capacitance resonance ateV5eV1
.U in Fig. 1. Finally, for eV.eV2.2U, this antibound
state becomes a bound state.

In order to elucidate the nature of the charge-trans
resonance in the Mott insulator, let us first consider the s
plest caseL52, for which Eq. ~1! reduces to a simple 4
34 matrix. The polarization charge and capacitance m
then be obtained directly@neglecting terms of order (t/U)2#,

Q2C0V

e
5

1

2
1

1

2

eV2U

A8t21~U2eV!2
, ~7!

Cm2C05
4e2t2

@8t21~U2eV!2#3/2. ~8!

Equations~7! and~8! predict a charge transfer ofe across the
chain and a capacitance peak ateV5U. Equation~8! was
obtained previously in Ref. 1, where it was shown to d
scribe charge transfer between two arbitrary mesoscopic
tems coupled weakly by tunneling. Following the above
gument on the nature of charge transfer in the Mott insula
one may expect a result analogous to Eq.~8! to hold for
larger chains as well, since the effective coupling of t
boundary dots via the intervening Mott insulator should d
crease exponentially with system size. Indeed, the cap
tance peaks ateV.U are found to become increasingly hig
and narrow~the area, which corresponds to the total cha
transferred, is conserved! as L increases, but their shape
found to be described very well by Eq.~8!, with t replaced
by an effective charge-transfer matrix elementteff , as shown
in Fig. 2~a!. Fitting the calculated capacitance to Eq.~8!, the
effective charge-transfer matrix element is found to have
form

teff.te2~L22!/j~U/t ! ~9!

as shown in Fig. 2~b!, where the correlation lengthj in the
Mott-insulating phase of the 1D Hubbard model is given b7

1/j~U/t !5
4t

U E
1

`

dy
ln~y1Ay221!

cosh~2pty/U !
. ~10!

Equation~9! indicates that the effective charge-transfer m
trix element, which characterizes the resonant polarizab
of the Mott insulator, exhibits a finite-size scaling analogo
to the conductivity of the system, which also decreases
ponentially with system size in the Mott insulator.7 teff is in
o-

o
e
-

-
d
in

-

e
e

r
-

y

-
s-
-
r,

e
-
ci-

e

e

-
y
s
x-

fact related to the equal-time Green’s functionteff5tG(1,L)
5t(s^0uc1s

† cLsu0&, and it has already been argued7 that G
has the same scaling form as the conductivity for anot
choice of boundary conditions. Dielectric measurements t
present the intriguing possibility to study experimentally t
correlation length of a Mott insulator formed in a cohere
system of quantum dots.

While the charge-transfer resonances in the Mo
insulating phase of the model can be described by the the
of Ref. 1, it is evident from Fig. 1 that the capacitance in t
metallic phase of the model, which may exhibit a low-bi
double peak structure, cannot in general be described b
equation of the form of Eq.~8!. As shown in Fig. 3, this
double peak structure in the dilute metallic phase of the s
tem is accentuated with increasing system size, and co
sponds to a polarization charge with well-defined plate
quantized in units ofe/2, unlike the integer charge transfe
described by Eq.~7!. From Table I, we see that the polariz
tion of the system in the metallic phase proceeds via
successive capture by the boundary dot of electrons from
Luttinger liquid states delocalized along the chain~since the
antibound states are empty forN,L), the first ateV52t
and the second ateV5eV2.2U. The breakdown of Eqs.~7!
and ~8! is due to the fact that the system can no longer

FIG. 2. ~a! The charge transfer-induced resonant capacita
peaks for Mott-insulating chains of two, four, and eight dots~plot-
ted as indicated in a legend!, varying by several orders of magn
tude in height and width, are shown to collapse on the resca
capacitance peak given by Eq.~8! ~solid line!. ~b! The effective
coupling teff between the boundary dots of the Mott-insulatin
L-dot chains is plotted forU/t56, 7, 8, 9, and 10. The solid line
with slope minus unity is shown to emphasize the scaling of
data given by Eq.~9!.
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divided into just two weakly coupled subsystems, as w
assumed in Ref. 1, but instead becomes one coherent w
in the metallic phase.

The fractional increments of polarization charge shown
Fig. 3 arise because the trapping of an electron from
gapless quantum states in the central part of the array l
to an effective charge transfer over only half the system. D
to the breaking of particle-hole symmetry in the metal
phase of the model, the formation of a bound state at one
of the array need not occur at the same bias voltage as
formation of an antibound state at the other end of the ar
the polarization charges on the first andLth dots are there-
fore no longer equal and opposite in the metallic phase
was the case in the Mott-insulating phase. As seen in Fig
the charge fractionalization near zero bias occurs for
electron densities (N/L!1) or for a small density of holes in
the Mott insulator (12N/L!1). For intermediate densities
the plateau at zero bias is suppressed~see curve forN516 in
Fig. 3!. For N51, the physics is simple: From Table I, w
see that the electron becomes bound at opposite ends o
array foreV562t; for eV!2t, the polarization of the sys
tem is negligible, leading to a plateau in the polarizati
charge^Q&. For a dilute system withN!L, this qualitative
picture remains true~see curve forN54 in Fig. 3!, but for
intermediate densities~see curve forN516 in Fig. 3! this
single-particle picture breaks down and the charge plat

FIG. 3. Quantum correction to the polarization charge indu
on the external capacitor plates versus bias voltage for a Hub
chain of quantum dots in the metallic phase (N,L). Note thatQ is
quantized in units ofe/2 (N!L or N&L) reflecting a fractional
(e/2) charge transfer within the chain.
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near zero bias is suppressed. On the other hand,
12N/L!1, the system behaves like a dilute gas ofholons,7

the charge excitations of the strongly correlated Mott insu
tor, and the reappearance of the charge plateau near zero
can be understood in terms of the trapping of holons by
boundary potentials.

Let us comment on some of the idealizations employed
the above calculation. The introduction of an interdot capa
tance, neglected in Eq.~1!, leads to longer ranged site-off
diagonal interactions in the array, and a smoother distri
tion of the externally applied voltage drop. Such an extend
Hubbard model is no longer integrable via the Bet
ansatz technique, but Lanczos direct diagonalizat
investigations12 indicate that the physics is qualitativel
similar to that described here. Disorder, neglected in
present treatment, is not found to modify our main conc
sions, as confirmed by our Lanczos investigations.12 The
scaling form of the capacitance@Eqs.~8! and~9!# in the Mott
insulating phase of the system is preserved provided the
order is not sufficiently strong to lead to a compressible st
although the correlation lengthj is found to depend on dis
order. Similarly, the fractional polarization charge platea
shown in Fig. 3 are robust with respect to disorder, thou
the voltage bias of the steps may be shifted. We also rem
that for temperatureskBT much larger than the effective
charge-transfer matrix element, the form of the capacita
peaks given in Eq.~8! and Fig. 3 will be replaced by a simpl
derivative of the Fermi function, of widthkBT; however, the
peak positions can still be used to distinguish between
tallic and Mott-insulating behavior.

In conclusion, we have investigated coherent cha
transfer in a strongly correlated artificial linear molecule
tunnel-coupled quantum dots. The polarizability in the Mo
insulating phase of the system was found to exhibit a univ
sal scaling form analogous to the conductivity of the syste
while the polarization charge in the dilute metallic phase
the system was found to be quantized in units ofe/2. Equi-
librium charge-transfer measurements present an intrigu
alternative to transport measurements to characterize
electronic states of ultrasmall structures. We believe that
pacitance measurements carried out in carefully fabrica
quantum dot chains should be able to observe the cha
transfer resonances and the universal scaling behavio
well as the metallic charge fractionalization phenomen
predicted here.
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