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Addition spectrum, persistent current, and spin polarization in coupled quantum dot arrays:
Coherence, correlation, and disorder

R. Kotlyar, C. A. Stafford,* and S. Das Sarma
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 29 December 1997!

The ground-state persistent current and electron addition spectrum in two-dimensional quantum dot arrays
and one-dimensional quantum dot rings, pierced by an external magnetic flux, are investigated using the
extended Hubbard model. The collective multidot problem is shown to map exactly into the strong-field
noninteracting finite-size Hofstadter butterfly problemat the spin polarization transition. The finite-size Hof-
stadter problem is discussed, and an analytical solution for limiting values of flux is obtained. In weak fields we
predict interesting flux periodic oscillations in the spin component along the quantization axis with a period-
icity given by nh/e (n<1). The sensitivity of the calculated persistent current to interaction and disorder is
shown to reflect the intricacies of various Mott-Hubbard quantum phase transitions in two-dimensional sys-
tems: the persistent current is suppressed in the antiferromagnetic Mott-insulating phase governed by intradot
Coulomb interactions; the persistent current is maximized at the spin density wave–charge density wave
transition driven by the nearest-neighbor interdot interaction; the Mott-insulating phase persistent current is
enhanced by the long-range interdot interactions to its noninteracting value; the strong suppression of the
noninteracting current in the presence of random disorder is seen only at large disorder strengths; at half-filling
even a relatively weak intradot Coulomb interaction enhances the disordered noninteracting system persistent
current; in general, the suppression of the persistent current by disorder is less significant in the presence of the
long-range interdot Coulomb interaction.@S0163-1829~98!00531-1#
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I. INTRODUCTION

In this paper we consider an array of coheren
coupled1–5 semiconductor quantum dots arranged in fin
two-dimensional~2D! square lattices or 1D rings pierced b
a magnetic flux oriented normal to the lattice or the ri
plane. At low temperatures, these quantum dot arrays ma
considered ‘‘artificial molecules’’~with individual quantum
dots being the ‘‘atomic’’ constituents of these artificial mo
ecules! because the electron phase coherence length is c
parable to the array linear size. Theoretical work on multi
systems has mostly concentrated on the two limiting sit
tions: coherent dots with no Coulomb interaction6 and Cou-
lomb blockade of individual dots.7,8 In this paper, we con-
sider quantum dot arrays taking into account quant
fluctuations arising from interdot hopping, electron-electr
interaction, and random disorder effects through an exten
Hubbard-type Hamiltonian.9–11

In a previous paper,11 we reported on our prediction of a
equilibrium persistent currentin finite 2D dot arrays~with-
out any periodic boundary conditions! in the presence of an
applied magnetic field transverse to the 2D plane. In t
paper we provide details and expand on our previous w
and present results for the electron addition spectrum and
persistent current in 2D square lattices and 1D rings incl
ing effects of collective physics arising from the multiple d
structure of the system within a simple model for the sing
particle physics12 of the individual quantum dots. One of ou
primary motivations is to understandlattice effects on the
persistent current and the electron addition spectrum, the
tice here being theartificial lattice defining the 2D or the 1D
quantum dot array~with the typical lattice constant in th
PRB 580163-1829/98/58~7!/3989~25!/$15.00
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20– 200 nm range!. One goal is to identify experimentally
observable features of various Mott-Hubbard quantum ph
transitions ~including realistic disorder and interaction e
fects! in semiconductor quantum dot arrays.

The importance of electron-electron interaction has b
stressed13–18 in the literature in the context of persistent cu
rent experiments in 1D gold and semiconductor rings.4 The
magnitude of the persistent current4 in disorderedgold rings
was found to be one to two orders of magnitude larger th
that theoretically predicted, whereas incleansemiconductor
rings the magnitude of the persistent current was found to
in a good agreement with the theoretically predicted sim
noninteracting value ofevF /L ~with vF being the Fermi ve-
locity of electrons moving in a ring of lengthL, in our no-
tationL denotes the size of the system as defined by the t
number of dots in it!. Although the interplay between disor
der and Coulomb interaction in determining the magnitu
of the persistent current in ring topologies is the subject
many recent theoretical investigations,16,17,19 the issue re-
mains unsettled. Disorder and interaction effects are n
rally included in our Mott-Hubbard model of finite quantu
dot arrays, and we will comment on their influence on t
persistent current.

The paper is organized as follows. In Sec. II we defi
and describe the extended Mott-Hubbard Hamiltonia9

which forms the basis of our theoretical description of t
collective physics in finite quantum dot lattices. In Sec.
we present our calculated electron addition spectrum a
function of the externally applied magnetic flux for a 333
lattice and anL59 –site ring, and identify the main feature
of these results, which are studied in subsequent section
Sec. IV we clarify the physical meaning of the magnet
3989 © 1998 The American Physical Society
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field dependence of the addition spectrum by making us
the equivalence between the derivative of the Hamilton
with respect to the flux and the magnetization density~or
equivalently, the persistent current! operators. In Sec. V we
study the energy spectrum and the persistent current of
finite open 2DAL3AL tight-binding lattices ofL noninter-
acting quantum dots. We also discuss in this context
Hofstadter spectrum of an infinite tight-binding lattice. W
establish a connection between the ground-state magne
tion in the lattice and in the continuum 2D system by ide
tifying the different regions in the energy spectrum in a l
tice, and illustrate them with the calculated distributions
the persistent current on a 15315 lattice. We also solve the
problem exactly for lattices of arbitrary sizes in the two lim
iting situations of the fluxf50 andf50.5f0 per unit cell
~with f05h/e being the fundamental flux unit!, and classify
the f50 states using group theory and perturbation theo
We also discuss in Sec. V our results for the noninterac
persistent current in 1D rings. In Sec. VI we study the el
tron addition spectra of interacting lattices in a magne
field. In Sec. VI A we study intradot Coulomb interactio
effects within the minimal Hubbard model approximation.
particular, we study theperiodic oscillations of the compo-
nentSz of the total ground-state electron spin along the qu
tization (z) axis of the 2D Hubbard model using the Lancz
exact diagonalization technique, and by solving the Be
ansatz equations in 1D rings. We reanalyze the persis
current results in a 1D Hubbard ring, and find that the int
acting system behaves as asingle particleby changing its
total orbital momentum sequentially as a function of the flu
The details of our Bethe ansatz analysis for the 1D Hubb
ring spectrum are given in the Appendix. In Sec. VI A w
also discuss the finite-size realization of the Mott-Hubb
metal-insulator transition and magnetic ordering in finite
32, 332, 432, and 333 quantum dot clusters~with L54,
6, 8, and 9 dots, respectively, in the system!. In Sec. VI B we
discuss the spin density wave–charge density wave orde
transition in a half-filled 2D 333 array in the presence of th
nearest-neighbor interactions. We find an enhancemen
the persistent current along the transition line. In Sec. V
we consider random disorder effects on the 2D persis
current. We find that the noninteracting persistent curren
a function of the disorder strength shows a behavior sim
to that of the conductivity:20 it is strongly suppressed only a
large disorder strengths. We obtain an empirical sca
function for the persistent current as a function of the dis
der strength. Finally, we discuss the effects of having b
disorder and Coulomb interaction on the 2D persistent c
rent in the 333 array by using the Lanczos exact diagon
ization technique. We conclude with a summary of our
sults in Sec. VIII.

II. MODEL

We model anisolatedfinite system~‘‘array’’ ! of coher-
ently coupled~nominally identical! semiconductor quantum
dots arranged in one-dimensional rings or two-dimensio
rectangular~‘‘square’’! lattices at zero temperature. We a
sume that the charging of an otherwise electrically neu
quantum dot array with a fixed numberN of excess quasi-
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particles is accomplished through the tunneling of the qu
particles from a nearby backgate electrode. The exc
charges are shared among all dots in the array in a mol
larlike fashion by quantum-mechanical tunneling, i.e., o
quantum dot array is coherent. The equilibrium properties
quantum dot arrays we investigate in this work can, in pr
ciple, be measured through experiments on semicondu
dot arrays using available experimental techniques: tunne
transport spectroscopy,1 equilibrium capacitance
spectroscopy,3 and equilibrium magnetization
measurements.4

The Hamiltonian of an isolated array ofL coupled quan-
tum dots is given by the sum of three terms:

Harray5~KE!sp1~KE!hop1Vint . ~1!

The (KE)sp term in Eq. ~1! includes all intradot single-
particle effects~including confinement contribution! and is
given by

~KE!sp5(
i ,a

L

« ia~B!c†
iacia . ~2!

In Eq. ~2! the summation is over all dotsi ; c†
ia(cia) is a

creation~annihilation! operator for a quasiparticle on thei th
dot in a statea. The single-particle magnetic-field depe
dence is included in Eq.~2! through the usual Fock-Darwin
Zeeman scheme as

« ia[«a5\@~vc/2!21v0
2#1/21~21!agemBB/2 ~3!

with vc5eB/m* being the cyclotron frequency. The con
finement potential of a quantum dot is known to be appro
mately parabolic.21 The single-particle intradot level spacin
at zero field is taken to beD5\v0 ~with v0 essentially
being a harmonic oscillator frequency!. We consider a single
spin-split level per dot, and seta51,2 in Eq. ~3! to corre-
spond to the spin up/down lowest confined quantum
level. We neglect correlations arising from single-partic
level crossings that have to be taken into account for fie
larger thanB5@g!(g!12m/m* )#21/2(D/mB), and concen-
trate on the collective physics in the array.

In the nearest-neighbor tight-binding approximation, t
tunneling energy is given by

~KE!hop5 (
^ i , j &,a

~ taeif i j c†
iacj a1H.c.!, ~4!

where ta[t are the tunneling amplitudes andf i j

5(e/\) * i j AW • l i j
W is the Peierls phase factor,22 with AW as the

magnetic vector potential. The indicesi , j denote the spatia
positions of the dots. The (KE)hop term defines the topology
of the array. We model a one-dimensional ring ofL quantum
dots with a total magnetic fluxf piercing its enclosed are
and a two-dimensional square lattice ofL5Lx3Ly with
open boundary conditions with a magnetic fluxf piercing
each unit cellof the lattice.

The third term in Eq.~1! defines the intradot and interdo
Coulomb interactions between quasiparticles,

Vint5(
i j

Vi j

2
r̂ i r̂ j , ~5!
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where r̂ i5(ac†
iacia is the number operator for thei th

quantum dot. The interaction constants are related to the
pacitance matrix of the quantum dot array
Vi j 5(C21) i j , where Cii 5Cg1NiC and Ci j 52C for
nearest-neighbor dots.9,7,8 The capacitanceCg represents the
capacitance of a quantum dot with respect to the exte
gates, whileC denotes the capacitive coupling between
i th dot and theNi neighboring dots. Equation~1! thus has the
form of an extended Hubbard model with screened lo
range interactions. ForC!Cg , the interaction matrix ele-
ments fall off asVi j ;U(C/Cg) u i 2 j u. We include the effects
of short-range interactions, keeping only the on-site inter
tion U and the nearest-neighbor interactionV. We use
t50.1 meV,D53t, andU510t in our calculations~unless
otherwise stated! as a representative set of Hubbard para
eters describing the GaAs dot arrays. The Hamiltonian gi
by Eqs.~1!–~5! has been used earlier to describe coherent
quantum dot chains with open or periodic bounda
conditions.9,10 ~Inclusion of disorder in our model will be
discussed in Sec. VII.! We calculate the electron additio
spectrum by doing an exact diagonalization of Eq.~1! in the
subspace of the total number of quasiparticlesN in the array
and the total spin componentSz [ 52 1

2 (N2M )1 1
2 M with

M being a number of spin-up electrons# along the externa
magnetic fieldBW . The Hilbert space of Eq.~1! with fixed N
andSz grows exponentially with the system size. We use
Lanczos method23 for our exact diagonalization of Eq.~1!,
and carry out a ground-state energy minimization overSz to
find the stable ground state for a givenN. The largest matrix
size that we have considered is 15 8762, which corresponds
to the interactingL59 ~or 333) dot array at half-filling for
N5L59. We also calculate the energy spectrum of o
dimensional rings in the limitC50 (Vii 5UÞ0, Vi j 50) by
solving numerically the corresponding Bethe ansatz ex
solution equations.

III. ELECTRON ADDITION SPECTRUM

By definition the chemical potentialmN of the array is
given by

mN5E0~N!2E0~N21!, ~6!

whereE0(N) is the minimum eigenvalue~i.e., the ground-
state energy! of Eq. ~1! in a space of fixedN and all allowed
M . The addition spectrum of the system is themN2N plot,
which we show in Figs. 1 and 2. The calculated chemi
potential of a 333 array and a nine-site ring in the minim
Hubbard model approximation (Vii 5UÞ0, Vi j 50) is
shown as a function of the applied fluxf in Fig. 1. Each
curve in Figs. 1~a! @1~c!# traces the chemical potentialmN of
a 333 array (L59 sites ring! with N electrons as a function
of the magnetic fluxf/f0 through a unit cell~the ring!, with
f05h/e. Thez component (Sz) of the total spin of the cor-
responding ground state of the system is shown in Figs.~b!
and 1~d!, and the critical magnetic flux for full spin polariza
tion in the array and the ring is given as an inset in Figs. 1~a!
and 1~c!, respectively.

The three main features of the results shown in Fig. 1
~a! the chemical potential spectrum evolves with the ma
mization of the total spin polarization in the system;~b! apart
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from an aperiodic single-particle background contributio
m(N) is a periodic function of the magnetic flux with a flu
periodicity ofgf0 with g<1; ~c! the spin-polarization tran-
sition of the system occurs through the cycles of theperiodic
Sz oscillations in the weak magnetic-field region.

The result~a! is a trivial outcome of the minimal Hubbar
model: a dominant Zeeman energy termg* mB leads to
single occupancy, effectively suppressing the presence o
HubbardU term in Eq.~1!. The chemical potential spectrum
therefore behaves as that of noninteracting spinless ferm
in the maximum spin-polarization region. The energy spec
of the nine-site systems plotted in Fig. 2~a! and in Fig. 7 for
noninteracting quasiparticles@setting «↓5D, N5M in Eq.
~1!# can be directly compared with the strong-field regions
Figs. 1~a! and 1~c!. In the weak field region the single
particle physics can again be distinguished from the coll

FIG. 1. ~a! @~c!# A chemical potentialmN as a function of fluxf
in units of f05h/e through an elementary cell@a ring in ~c!# of a
333 quantum dot lattice@nine-site ring in~c!# with N(5129)
excess quasiparticles in the minimal Hubbard model approximat
~b! @~d!# A correspondingz componentSz of the ground-state tota
spin as a function off. The magnetic flux is rescaled by 1/32 t
show the entire dynamics of the spectrum on one flux scale
explained in the text. Insets: The critical magnetic fluxfc of the
spin polarization transition as a function of the electron fillin
n5N/(2L) in the arrays.
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3992 PRB 58R. KOTLYAR, C. A. STAFFORD, AND S. DAS SARMA
tive physics, and the spectrum in this regime is plotted
Figs. 2~b! and 2~c! for the array and the ring, respectively.
Figs. 2~b! and 2~c! we set «↓5D, «↑5D1d, where
d/D(50.03)!1, andM corresponds to the minimum eigen
value of Eq. ~1! for a given N. ~We keep a small field-
independent shiftd between opposite spin single-partic
states for our later discussion of theSz oscillations.! The
parameters of the Hamiltonian that we use in Eqs.~1!–~5!
determine the value of the critical magnetic fluxfc needed
to produce full spin polarization in the 333 array to be

FIG. 2. ~a! A chemical potential spectrum plotted vs flu
through a unit cell of a noninteracting 333 array with «↓5D,
N5M in Eq. ~1!; ~b! @~c!# A chemical potential as a function of flu
~top panel!, and the correspondingSz component of the ground
state total spin~bottom panel! of a 333 array@nine-site ring in~c!#
with «↓5D, «↑5D(11d/D) (d/D50.03) in Eq.~1!. ~a!, ~b!, and
~c! can be directly compared with high- and low-field regimes
Figs. 1~a! and ~c!, respectively.
n

fc'8t2a2/(g* mBU)'52f0 with a lattice constant of
a5280 nm. For illustrative purposes we rescaled the m
netic flux by 1/32 to show the full behavior of the spectru
on a single scale in Figs. 1~a!–1~d!. ~This rescaling physi-
cally corresponds to rescaling the lattice constant to'a/6.!

IV. PERSISTENT CURRENT

We first clarify the physical meaning of the intricate ma
netic field dependence of the energy spectrum shown in F
1 and 2. It is well known24 that gauge invariance along wit
the single-valuedness of the electron wave function allo
for the existence of a ground-state persistent current in n
mal metal rings threading an external magnetic flux. T
intrinsic magnetic moment associated with this persist
current, which is proportional to the persistent current its
in 1D rings, is an oscillatory function of the external flu
with a period equal to the elementary flux quantumf0. The
existence of such an oscillatory persistent current in nor
metal rings has been experimentally verified.4

In finite 2D continuoussystems no magnetization is ex
pected classically.25 It is argued that the magnetization due
electron orbits along the edge of the sample exactly can
the magnetization arising from the bulk orbits. In a quantu
mechanical description, however, the contribution from
edge states is expected to be statistically insignificant,25 and
the bulk contributions lead to the famous Landau diamag
tism in macroscopic 2D systems. In mesoscopic systems
phase coherence lengthLf is comparable to the linear sys
tem size L, and as was shown in several theoretic
papers,26,27 the edge states in this situation can carry a p
sistent current creating a paramagnetic moment in the c
tinuous 2D geometries~e.g., a 2D disk-shaped quantum do!
comparable in magnitude to the Landau diamagnetic te
The Aharonov-Bohm effect leads to a flux periodicity of th
magnetization carried by the edge states effectively form
a 1D ring geometry in continuous 2D mesoscopic syste
We characterize the ground state magnetization of finite
quantum dot arrays without resorting to an artificial sepa
tion of bulk and edge states~which are not really meaning
fully distinguishable in small structures! by considering the
lattice model. The lattice spectrum contains the ‘‘edg
states, the ‘‘bulk’’ states, and all other electron states giv
by the superposition of all topologically closed electr
paths in the finite 2D lattice.

It is easy to show by using commutation properties ofH
with the polarization operator28 that the persistent curren
between two nearest-neighbor lattice sitesi and j in our
model is given by

Ji j 52
4p

f0
(
a

~Rj2Ri !Im$t i j ,aeif i j c†
iacj a%. ~7!

The magnetization densitymz , which has a nonvanishingz
component along the magnetic field direction, and the
rivative of the Hamiltonian in Eq.~1! with respect to the flux
~apart from the field dependence of single-particle levels i
single dot! are, therefore, the two equivalent operators.

In this paper we use the convention of calling the mag
tization densitymz the persistent currentI in both 1D and 2D
systems:
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I[mz52
]H

ncells]f
. ~8!

Experimentally, the equilibrium persistent current is usua
observed by measuring the ground-state magnetization.

V. NONINTERACTING SPECTRA

We consider first the Hofstadter problem29 of a single
particle in a magnetic field on an infinite tight-binding la
tice. In the Landau gauge,AW 5(0,Bx,0), the discrete Schro¨-
dinger equation in the occupation basisua&5( (x,y)c(x,y) is

c~x11,y!1c~x21,y!1e2 i2p ~f/f0! xc~x,y11!

1ei2p ~f/f0! xc~x,y21!52E/tc~x,y!, ~9!

wheref is the flux through a unit cell, and the lattice co
stanta is taken as the unit length. Atf50, an infinite sys-
tem described by Eq.~9! is translationally invariant. The
coefficients of Eq.~9! involve only x. The y motion sepa-
rates out29 assuming that they part of the wave function
preserves itsf50 plane-wave form:

c~x,y!5A~ky!c~ky ,x!eıkyy. ~10!

The functionc(ky ,x) is a solution of

c~x11!1c~x21!

12 cosS 2p
f

f0
x2kyDc~x!52E/tc~x!.

~11!

Equation~11! is the well-known Harper equation, describin
a particle in a one-dimensional quasiperiodic potential. T
Harper equation spectrum hasq energy bands at the rationa
fractional values of fluxf5 (p/q)f0 with p and q being
any two integers. At incommensurate flux values~i.e., when
f/f0 is not rational! the spectrum becomes a Cantor se29

The energy spectrum of Eq.~11! is always a continuous
function of the magnetic flux,29 independent of whethe
f/f0 is rational or irrational. This enables one to make
direct connection between the lattice and the continu
spectra, for example, in identifying Landau bands in the
tice spectrum.

The basic features of the spectrum29 of Eq. ~11! ~which
we will refer to as the Hofstadter spectrum!, which are also
pertinent for a finite lattice, are:~a! it is periodic in f0,
E(f)5E(f1nf0); ~b! it is an even function of flux,
E(f)5E(2f); ~c! both E(f) and 2E(f) belong to the
spectrum;~d! the spectrum is bounded,24t<E(f)<4t. A
quarter of the Hofstadter spectrum plotted for rational val
of the flux is shown in Fig. 3 where we explicitly label th
first two Landau bands. The Landau bands are formed in
continuum limit when the magnetic length far exceeds
lattice constant, i.e.,l 05A(1/2p)(f0 /f)@1. In the tight-
binding model, the effective mass ism'\2/2t. The energy
levels in a lattice forl 0@1 are approximately given by th
continuous system Landau level expression,En
5\vc(n1 1

2 ) with \vc54ptf/f0.30 For example, the ra-
tios of the slopes of the first three Landau bands in Fig
obey 23.4:15.1:5.5'5:3:1. Theanalytical solution of Eq.
y

e

t-

s

e
e

3

~11! for rational flux values were recently obtained using t
Bethe ansatz method.31 The complete spectrum is extreme
complex, but a general feature of the spectrum that can
seen in Fig. 3, and to which we will later return in our stu
of the persistent current in finite systems, is the presenc
energy bands separated by large gaps.

A quarter of the spectrum for a finiteAL3AL515315
(L5225) lattice is shown in Fig. 4. A qualitative similarit
between the spectra plotted in Figs. 3 and 4 was pointed
in the literature:30 the presence of similar energy bands in t
spectrum, where the gaps between the bands are filled by
edge states that necessarily exist in finite systems. A fi
spectrum was studied earlier in connection with the Quan
Hall effect and mesoscopic Aharonov-Bohm fluctuations30

The emphasis of these earlier studies was on the part o
spectrum where both the Landau bands and the edge s
can be clearly identified@the region from~d! to ~e! in Fig. 4#.

FIG. 3. A spectrum of Eq.~11! plotted for rational fractions of
flux f/f05p/q (q5120,p is incremented from 1 to 60! through a
unit cell of an infinite tight-binding lattice. The first two Landa
bands (n50,1) are marked on the plot.

FIG. 4. A spectrum of a finite 15315 tight-binding lattice vs
f/f0 through a unit cell. The different regions that are mark
~a!–~l! on the plot are discussed in the text.
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FIG. 5. The persistent current and charge-density distribution of the single-particle states marked in Fig. 4. The darkness of ci
darkness, or thickness, of connecting lines are proportional to the magnitude of charge and current, respectively. Arrows on the l
a direction of the persistent current. The maximum current and charge in~a!–~l! in units of (et/h) ande, respectively, are 0.028, 0.009
0.114, 0.018; 0.232, 0.023; 0.250, 0.102; 0.393, 0.039; 0.150, 0.030; 0.162, 0.062; 0.172, 0.019; 0.126, 0.011; 0.161, 0.027; 0.0
0.099, 0.017.
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FIG. 5. ~Continued!.
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Using Eqs.~4! and ~7!, we calculate the persistent curre
distributions in finite lattices forall eigenstates of Eq.~9!.
We follow Ref. 30 in the identification of different regions
the spectrum and illustrate each region with a sample cur
and a charge-density distribution shown in Fig. 5. The low
half band states in the weak field30 regime (l 0.AL) labeled
~a!, ~b!, and ~c! in Figs. 4 and 5 can be considered to
nt
r-

extended bulk states because the paths of the persisten
rent carried by these states extend across the sample
finite weights both at the boundaries and in the bulk. T
sign of the current carried by these states oscillates, bu
f→0 it is determined by the degree of the degeneracyg of
the spectrum atf50. We identify the first three Landau
bands in the spectrum labeled~d!, ~e!, and~f! in Figs. 4 and
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5 ~the traces of the fourth and fifth bands can also be see
the plot!. The ratios of the slopes of the first three bands
comparable to those of the infinite tight-binding lattic
20.2:14.1:5.3. It is interesting to note that the radii of t
‘‘large weight’’ persistent current orbits in Fig. 5 approx
mately satisfy the semiclassical expression for the cyclot
radius of thenth Landau band,Rn5 l 0A2n11. The ratios of
the radii of the persistent current orbits of the first thr
Landau bands in Fig. 5 obey5:4:2'A5:A3:1. Thus the
continuous system result approximately holds for a finite
tice as well: eachnth Landau orbit accommodates one mo
flux quantum than the (n21)st band orbit.

For larger fluxf> (f0/2p), the Landau levels form a
more complicated but less degenerate pattern. We labe
representative states~g!, ~h!, and~i! for this region. The dis-
tribution of the persistent current carried by these states
pears to consist of disconnected orbits, which can be fo
anywhere in the lattice. Intuitively, the existence of the
disconnected persistent current orbits is consistent with
general expectation that smaller quantization orbits sho
not be strongly affected by the confining potential.

The gaps of the infinite system in Fig. 3 are filled wi
edge states between the bulk Landau levels and the bran
Landau levels in Fig. 4. The current distributions of the re
resentative edge states labeled~j!, ~k!, and ~l! in Fig. 4 are
shown in Fig. 5. These edge states have the largest we
concentrated near the boundaries in agreement with t
states being called the ‘‘edge’’ states. The sign of the curr
carried by edge states of the type~j! is paramagnetic in ac
cordance with the semiclassical argument given by Peier25

The flux and energy separation between these states c
spond to one added flux quantum through the total are
the sample. This is the origin of the periodic Aharono
Bohm oscillations superimposed on a regular pattern of
Haas–van Alphen oscillations in the magnetization and
the magnetoconductance discussed earlier by Sivan
Imry.30

The total persistent currentI of a system ofN noninter-
acting spinless particles for two values ofN selected in Figs.
4 and 5 is shown in Fig. 6. From the symmetries of t
L5L1/23L1/2 lattice spectrum, it follows thatI (2f)5
2I (f), I (f1nf0)5I (f), and I (N)5I (L2N). The total
current is given by the sum of currents carried by all oc
pied single-particle states, and it can be quite different fr
the persistent current carried at the Fermi energy. For
ample, in Fig. 6~a!, at flux f50.25f0, the state at the Ferm
energy is a second Landau-level bulk state@denoted~e! in
Figs. 4 and 5# that carries a diamagnetic persistent curre
But the total persistent current is positive at this value of fl
in Fig. 6~a!, corresponding to the positive contributions fro
each filled edge state. The change in the sign of the cur
from paramagnetic to diamagnetic in the region fro
f'0.1f0 to f'0.2f0 corresponds to merging all first 2
levels into the lowest Landau band. This merging of ed
states into bulk states was discussed in Ref. 30. A sim
change of the sign of the persistent current can be see
Fig. 6~b! for the region of flux from f'0.3f0 to
f'0.37f0, where the Fermi energy crosses from t
branched Landau states through an edge state into the l
Landau-level branched states.
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In a finite 2D lattice with open boundary conditions,
general solution of the Hofstadter problem is formally wr
ten as

c~x,y!5A~ky!c~ky ,x!expıkyy

1A~2ky!c~2ky ,x!exp2ıkyy, ~12!

where c(ky ,x) and c(2ky ,x) are the formal solutions o
Eq. ~11!. The motion in thex andy spatial directions gener
ally cannot be separated in Eq.~12!. The difficulty encoun-
tered in obtaining an analytic solution for the spectrum o
finite lattice stems from our inability to factor out ac(x)
factor in Eq.~12! corresponding to the oppositeky momenta
of an infinite lattice. The origin of this is the breaking of th
time-reversal symmetry by the magnetic field. Equation~11!
is not invariant under theky→2ky transformation. How-
ever, for the two limiting values of the magnetic fluxf50
and f50.5f0, the time-reversal symmetry is not broke
and the finite lattice problem can be analytically solved
reducing it to two effectively one-dimensional problems. T
exact solution for these two limiting values of flux is give
by

c~x,y!5A~ky!c~ky ,x!sin~ky!, ~13!

where ky takes on discrete valuesky5(pn/Ly11)
(n51,2,. . . ,Ly) with Ly being the extension of the samp
in they direction. Thex part of the wave function in Eq.~13!
satisfies the Harper equation,

c~x11!1c~x21!

12 cosS 2p
f

f0
xD cos~ky!c~x!52E/tc~x!.

~14!

It can easily be verified by direct substitution that Eq.~13! is
indeed a solution of Eq.~9! for the two limiting values of the
flux, f50 andf50.5f0.

FIG. 6. The total persistent currentI calculated using Eq.~8! for
~a! N526 electrons on a 15315 lattice@~e! in Figs. 4 and 5#, and
~b! N573 @~h! in Figs. 4 and 5#.
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At f50, Eqs.~13! and ~14! reduce to a trivially diago-
nalizable problem with a solution given by the superposit
of two independent standing waves in thex andy directions,

c~kx ,ky!5A~kx!A~ky!sin~kx!sin~ky!, and ~15!

E~kx ,ky!522t@cos~kx!1cos~ky!#. ~16!

In Eqs. ~15! and ~16! the pseudomomentakx and ky of a
finite L5Lx3Ly lattice take the discrete valueskx(y)
5(pnx(y) /Lx(y)11), with the integers nx(y)
51,2,. . . ,Lx(y) . The normalization constants are

A~kx~y!!52/A2Lx~y!11$12sin@~2Lx~y!

11!kx~y!#/@~2Lx~y!11!sin kx~y!#%
21/2.

We refer to the quantum numberskx(y) as the pseudomo
menta because the translational invariance is broken in
nite lattice, and the momentum is not a good quantum nu
ber. At f50.5f0, the problem reduces to solving th
algebraic equationDm(E)50, whereDm for m>2 obeys a
recursion relationDm5@E/t22 cos(ky)#Dm212Dm22 with
D15(E/t)224 cos2(ky) and D05E/t22 cos(ky). We note
that atf50.5f0, Eq. ~14! has the symmetries of a bipartit
lattice, and therefore the eigenspectrum is highly degene
at this value of the flux.

At f50, we can characterize the spectrum using elem
tary group theory. A finite squareL5AL3AL lattice has the
symmetries of theC4v spatial point group. It is invarian
under the following symmetry operations:~a! a rotation of
the whole lattice by 2p; ~b! a rotation byp; ~c! a rotation by
6p/2; ~d! a reflection around the vertical or horizontal ax
of symmetry; and finally~e! a reflection about the two mai
diagonals of the lattice. These symmetry operations form
classes, and therefore the eigenstates of Eq.~9! belong to five
irreducible representations. The degeneracies are imm
ately deduced from the character table32 of the groupC4v
given in Table I. The spectrum is either singly degenera
belonging to the one-dimensional A1, A2, B1, or B2 rep
sentation, or doubly degenerate, belonging to the tw
dimensionalE representation. In the last row of Table I w
show the characters of the reducible representation of
group C4v of a 333 lattice in the occupation basis. Usin
the character table of the irreducible representations and
characters of this reducible representation, we deduce
for the 333 system, group theory predicts two pairs of do
bly degenerate eigenvalues and five singly degenerate e

TABLE I. Character table ofC4v taken from Ref. 32. The las
row gives characters ofC4v on a 333 lattice in the occupation
basis.

E C2 2C4 2sv 2sd

A1 1 1 1 1 1
A2 1 1 1 21 21
B1 1 1 21 1 21
B2 1 1 21 21 1
E 2 22 0 0 0

x 9 1 1 3 3
n
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values. Similarly, the number of degenerate states is dedu
for a AL3AL lattice, and the results are given in Table
An additional electron-hole symmetry in theAL3AL prob-
lem mixes theAL singly degenerate states with total pseud
momentakx1ky5p at zero energy. This can also be se
from Eq. ~16!. To summarize, for a finite squareAL3AL
lattice atf50, we findg51 andg52 degenerate states i
the spectrum as well asg5AL degenerate states in th
middle of the spectrum@see Figs. 2~a! and 4 atf50 for the
examples of these spectra#. As f→0 the magnetic field ef-
fects can be calculated in perturbation theory, where the
turbing Hamiltonian is given by the total persistent curre
operator

H152ıt2p
f

f0
(
x51

Lx

(
y51

Ly21

x@c†
~x,y11!c~x,y!2H.c.#.

~17!

At a small flux, the persistent current carried by the sing
degenerate states is linear in the flux in the lowest nonv
ishing ~second-! order perturbation theory. The persiste
current carried by the doubly degenerate states is easily
termined by a degenerate first-order perturbation theo
where the first-order correction to the energy isE15
6u^guH1ub& with g andb being the two doubly degenerat
states with the same energy atf50.

We summarize our results for the limiting values of flu
for the 333 system in Table III. For generic values of th
flux, the spectrum of the 333 system is given by the solu
tion of the eigenvalue problem of a 939 matrix. A symme-
try operation which commutes with the finite two
dimensional square lattice Hamiltonian atfÞ0 will reduce
the problem. In a particular gauge such a symmetry ope
tion should leave invariant the Peierls phase factors in
~9!. In both the symmetric@AW 5 (B/2) (y,2x,0)# and the
Landau@AW 5B(0,x,0)# gauge, upon transversing the distan
between the two neighboring points (x1 ,y1) and (x2 ,y2) on
a square lattice, the electron’s wave function gains a ph
proportional tof (2,1)5y2x22x1y1. The objectf (2,1) is in-
variant undersv operations, which are reflections about t
main diagonals of the lattice, i.e.,x→y, y→x, and
x→2y, y→2x. It is easy to verify that this symmetry i
indeed observed in the numerically calculated current dis
butions in Fig. 5. In these gauges thesv operations exhaus
all the spatial symmetries, but we cannot rigorously pro
that this result is gauge invariant. We can, however, co
ment on the degeneracies~or level crossings! which occur in
the spectrum in Fig. 2~a! at f5 1

8 nf0 , n51,2,3,4. The lim-
iting cases are given in Table III. The degeneracy

TABLE II. A number m(R) of eigenvalues belonging to a
irreducible representationR of theC4v group on aL1/23L1/2 lattice.

Lodd Leven

m(A1) (L14AL13)/8 (L14AL)/8
m(A2) (L24AL13)/8 (L24AL)/8
m(B1) (L21)/8 L/8
m(B2) (L21)/8 L/8
m(E) (2L22)/8 2L/8
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f50.25f0 at zero energy follows from the particle-ho
symmetry. The values of flux at which the degeneracies
cur, f5 1

8 f0 andf5 3
8 f0, are the values when the first an

second semiclassical orbits are commensurate with the
tice.

In a one-dimensional ring of lengthL enclosing a mag-
netic flux f, the symmetry operator that commutes with t
Hamiltonian is the magnetic translation operator along
ring, and the one-dimensional problem is easily diagonali
for all values of the flux with a spectrum given by14

En522t cosF2p

L S f

f0
1nD G , ~18!

wheren51, . . . ,L. At a finite flux, the eigenstates of the rin
Hamiltonian are also the eigenstates of the moment
which are obtained from the momentum atf50 by the same
shift (2p/L) (f/f0) for all eigenstates.~As we shall show
later, this result also holds in an interacting one-dimensio
Hubbard ring.! The energy level crossings between any t
different n and n8 states occur at f satisfying
n2n852(f/f0) 12~integer!. The resultant energy spec
trum is periodic inf ~with a periodf0) through the ring.
The discontinuities in the persistent current occur atf50
(f50.5) for even ~odd! total number of electrons in th
ring.14 A typical spectrum of a 1D tight-binding ring i
shown in Fig. 7 for theL59 site ring.

FIG. 7. The energy spectrum of a nine-site tight-binding ri
shown for one period of flux through the area of a ring; this sp
trum can be compared with the high-field regime in Fig. 1~c!.
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It is of interest to compare the relative magnitudes of
1D and 2D noninteracting persistent currents. In the 1D r
with N electrons the total currentI (N,f) is of the same order
as the persistent current carried by the occupied individ
states. This happens due to the cancellation of the persis
currents carried by the states with opposite momenta in
ground state distribution. In one period,I (N,f) in the 1D
ring is given by

I ~Nodd!52I 0 sinS 2p

L

f

f0
D sin~pN/L !

sin~p/L !
,

20.5<
f

f0
<0.5, and ~19!

I ~Neven!5I 0Fsin
2p

L S N/21
f

f0
D

2sinS 2p

L

f

f0
D sin@~N11!p/L#

sin~p/L ! G ,

0<
f

f0
<1, ~20!

whereI 05evF /L with vF52t/\. Similar formulas were de-
rived in Ref. 14. In a 2D system, the magnitude of the to
current can decrease due to the cancellation between o
site sign persistent current contributions coming from b
and edge states. In our earlier work,11 we showed that the
typical 2D persistent current̂I 2&1/2 scales with the size o
the boundary of the system. For completeness, we reprod
in Fig. 8 our results for the calculated system-size dep
dence of the typical current in the half-filled 1D and 2
systems with the same flux through the areas of each sys
In the case of a constant flux density~i.e., the same flux
piercing a unit cell for different systems!, the magnetization
density~or the persistent current! saturates for large system
sizes of 2D lattices for all electron fillings as shown in Fig.

-

s
TABLE III. A summary of the analysis of the 333 tight-binding lattice spectrum for the limiting value
of the flux.

f50 f50.5f0

E/t (kx ,ky) Representation,
parity

Lowest-order
correction

E/t, ky

22A2 (p/4 , p/4) A1, 1 1p2/4(f/f0)2 22, p/4

2A2 (p/4 , p/2) E, 2 2pf/f0 22, 3p/4

2A2 (p/2 , p/4) E, 2 1pf/f0 2A2, p/2
0 (p/4 , 3p/4) Mix 22pf/f0 2A2, 3p/4
0 (p/2 , p/2) of 0 0,p/2
0 (3p/4 , p/4) A1,B1,B2, 1 12pf/f0 A2, p/4
A2 (p/2 , 3p/4) E, 2 2pf/f0 A2, p/2
A2 (3p/4 , p/2) E, 2 1pf/f0 2, p/4

2A2 (3p/4 , 3p/4) A1, 1 2p2/4(f/f0)2 2, 3p/4
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VI. INTERACTING SPECTRA

A. The minimal Hubbard model

1. Periodic Sz oscillations

A puzzling and interesting feature of the results plotted
Figs. 1 and 2 is theperiodic oscillations of thez component
Sz of the total spin in the ground state of a finite quantum
array. The existence of spin flips in the ground state by its
is not surprising. Any level crossing between states with d
ferent spins leads necessarily to a spin flip. The presenc
another flux value within a magnetic period that leads t
reverse flip cannot be assumeda priori. This implies that the
lowest-energy states with differentSz can be degenerate for
range of the magnetic flux or at discrete flux values. W
show in Fig. 10 the magnetic flux dependence of the grou
state energy of the 333 array in the minimal Hubbard mode
@Eq. ~5!# for values ofN and M for which we find theSz
oscillations in Fig. 2~b!. To obtain the results in Fig. 10, w
set« i↑5« i↓50, and also leave out the terms not contributi
to theSz oscillations and consider an interaction of the loc

FIG. 8. ^I 2&1/2 at half-filling vs system sizes~L! (L5L1/2

3L1/2 with L1/2 varying from 2 to 10!: triangles~2D array!, squares
~1D ring!. ~The average is taken over the range of the same t
flux through the systems, which varies from2f0/2 to f0/2.! The
dashed lines are the best linear fits to the dependence^I 2&1/2;La

with a50.46 (1.1) in a 2D~1D! systems.

FIG. 9. A typical current̂ I 2&1/2, I at f50.25f0, and the maxi-
mum currentI max are shown from top to bottom, respectively, as
function of N electrons inL1/23L1/2 systems~with L1/2 varying
from 2 to 10! with the same flux density for systems of differe
sizes.
t
lf
-
of
a

e
d-

l

form Vint5( i 51
L U r̂ i↑r̂ i↓ in Eq. ~5!. The ground-state energ

with fixed N and M as a function of the flux appears t
consist of segments of parabolas with their centers shi
along both the field and energy axes. ForN52,3,4,5,6 in
Fig. 10, the energy parabolas belonging to differentM values
overlap for a range of flux, leading to periodicSz oscillations
in Fig. 2~b! for a nonzero Zeeman splitting. This result is n
restricted to 2D systems. We find it to be valid also in 1
rings. We show in Fig. 11 the flux dependence of the low
energy with differentN andM for which we findSz oscilla-
tions in Fig. 2~c! in the Hubbard ring withL59 sites. In the
rest of this subsection, we solve the Bethe ansatz equat
to study theSz degeneracy of the ground state of a 1D Hu
bard ring and then generalize our results to two dimensio

The energy and the canonical momentum of anL-site
Hubbard ring withN electrons see~Fig. 12! enclosing a mag-
netic flux f are given by the Bethe ansatz solution

E522(
j 51

N

coskj , ~21!

P5(
j 51

N Fkj2
2p

L

f

f0
G5

2p

L F(
j

I j1(
a

JaG . ~22!

@For the sake of brevity, we refer to the canonical moment
defined in Eq.~22! as the momentum from now on.# The
energy and the momentum of the interacting system in E
~21! and~22! are given by expressions similar to those for
noninteracting system, involving a summation overN
pseudomomentakj . The pseudomomentakj describe the
charge degrees of freedom that are coupled to the spin
grees of freedom with associated spin quantum numbersla
in an interacting system. The set of numberskj and la ,
referred to as charge and spin rapidities, is found33 by
solving a set of coupled Bethe ansatz equations:

Lkj52pI j12p
f

f0
2 (

b51

M

2 tan21Fsin kj2lb

U/4t G , ~23!

(
j 51

N

2 tan21Fla2sin kj

U/4t G52pJa1 (
b51

M

2 tan21Fla2lb

U/2t G .
~24!

The quantum numbersI j (Ja) are integers ifM is even
~ N-M is odd! and half-odd integers ifM is odd (N-M is
even!, andJa is restricted34 to a rangeuJau,(N2M11)/2.
The ground-state energy is obtained by taking the conse
tive sets of integersI j andJa , and the lowest excitations ar
obtained by having holes in the ground-state distribution
quantum numbers.

The problem of the persistent current in a 1D Hubba
ring was studied earlier in Ref. 35. These authors found
the system accommodates magnetic flux by creating a m
non excitation with a hole in the ground-statela distribu-
tion. In Ref. 35 it was assumed that the spin excitatio
caused by the magnetic flux in the system remain spin wa
for all values ofU/t. This allowed one35 to conclude that for
infinite U/t, the ground-state energy hasN cusps in a mag-
netic period. For large but finiteU/t relevant to quantum do
arrays under investigation, the assumption that a magn

al
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FIG. 10. The energy of the 333 quantum dot array calculated using Eq.~1! in a minimal Hubbard model approximation@(Vii /2) 5U
510t, Vi j 50, «↑5«↓50] as a function of the flux through the unit cell. The energy is plotted for all values ofN andM that are found in
the ground state of the array in Fig. 2~b!. In ~a!–~f!, a number of electronsN in the array is as indicated in the legend;M5N/2, M5N/2
21, M5N/222 energy states are shown with the solid, dotted, and dashed lines, respectively. The states with differentM that are
degenerate over the range of flux have the total spin in~a! S51; ~b! S5

3
2 ; ~c! S52,1,0; ~d! S5

3
2 ; ~e! S51.
ll
tu
es
e

at
a

te
val-
field leads to a spin wave excitation in a 1D ring works we
In the Appendix, we reanalyze the ground-state quan
number distribution of a Hubbard ring with particular valu
of N andM that were singled out in Ref. 35. In addition w
analyze the ground-state distributions ofM21 states to un-
derstand the origin of the periodicSz oscillations.
.
m

To summarize our analysis of the Appendix, we find th
a 1D Hubbard system ofN interacting electrons behaves as
single particleon a ring in a magnetic flux: the ground sta
corresponds to a sequence of states with the consecutive
ues of the total momentum that are defined by Eq.~22!. The
resulting ground-state energy hasN intersecting parabolic
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FIG. 11. The energy of an nine-site Hubbard ring as a function of the flux through the ring calculated using the Bethe ans
~21!–~24!. All parameters and plotting conventions are as given in the caption in Fig. 10. A sequence of states in one magnetic p
the flux 20.5<f/f0<0.5 is given by~a! (L/2p) P51,0,21 (M51) and (L/2p) P51,21 (M50); ~b! (L/2p) P51,0,21 (M51) and
(L/2p) P50 (M50); ~c! (L/2p) P52,0,22 (M52) and (L/2p) P51,0,21 (M51); ~d! (L/2p) P53,0,23 (M53), and
(L/2p) P53,1,21,23 (M52); ~e! (L/2p) P54,24 (M54) and (L/2p) P50 (M53). The states with differentM that are degenerate
over the range of flux have the total spin in~a! S51; ~b! S5

3
2 ; ~c! S51; ~d! S51.
tu

qs

y in

a-
segments per flux period for largeU/t in agreement with
Ref. 35. The interacting system changes its total momen
as a function of the flux by creating a magnon excitation. W
find from the numerical solution of the Bethe ansatz E
~21!–~24! that the dynamics of this excitation~i.e., its loca-
m
e
.

tion in the spectrum of spin rapidities! is determined by the
dynamics of the total momentum that changes sequentiall
multiples of 2p/L from its minimum to its maximum value
within one magnetic period. This last finding was not emph
sized in the earlier analysis35 of the persistent current in a
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Hubbard ring. This result follows from Eqs.~21!–~24! in the
U/N→` limit. In the limit of the infinite interaction, the
pseudomomenta are given by

kj5
2p

L F(
j 8

~12d j j 8!I j 81
~L/2p!P

N
1

f

f0
G . ~25!

A sequential set of the total momentum states which m
mizes charge rapidities in Eq.~25! and, therefore, the
ground-state energy can be chosen by considering both
ther spin or charge, excitations in the ground-state quan
number distribution. The energy cost to create a charge
citation in the infinite interaction limit in a 1D Hubbard rin
is associated with the motion of noninteracting spinless
mions and its magnitude is of the order oft. The energy cost
to create a spin excitation is determined byt2/U, leading to
spin excitations being the most energy-efficient way in
1D Hubbard ring to accommodate the enclosed magn
flux.

The total spinS may not change in a different total mo
mentum ground state. Therefore, we find that all cusps in
ground-state energy within a magnetic period are associ
with changes in the orbital quantum numbers, but not nec
sarily with changes of the total spin. We find the grou
states with nonzero total spinS to be the generic situation
with respect to the magnitude of the interactionU/t, the
electron filling, and the flux. Such ground states maint
their (2S11) degeneracy with respect to the different valu

FIG. 12. The energy of the 1D Hubbard rings vs the flux
shown for N54n11,M52n case for L515, N59, M54, U
5200t ~a! andL59, N55, M52, U5200t ~b! for the consecutive
values of the total momentum in the rings. Each energy curv
labeled in the plot by the value of its total momentum expresse
units ofL/2p; in ~b! it is also labeled by the value of the total sp
S.
i-

ei-
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n
s

of Sz over the range of the magnetic flux. This extend
degeneracy is maintained until the total spinandmomentum
change in either of the differentSz ground states. In the
presence of the extended total spin degeneracies a small
zero Zeeman term (vz) in the Hamiltonian in Eq.~1! leads to
the periodic oscillations of thez componentSz of the total
spinS as shown in Figs. 1 and 2. The reason is the followin
For smallvzÞ0 the ground state is theM5N/211 state,
whereas forvz50 the M5N/2 andM5N/211 states are
degenerate. Beyond this region, theM5N/2 state is the
lowest-energy state, and the system changes itsSz until it
completes a period and the ground state again beco
M5N/211 state. In the 2D 333 array, similar extended
total spin degeneracies with respect to theM ,M21,M22
states lead to theSz oscillations in Figs. 1~a!, 1~b!, and 2~b!.

2. Spin-polarization transition

The critical magnetic fieldBc characterizing the spin po
larization transition in the minimal Hubbard model is dete
mined to begmBBc'7.5(t2/U) and '11(t2/U) at half-
filling in the L59 ring and the 333 array, respectively~see
insets to Fig. 1!. In an infinite system, the critical fieldBc

corresponds to a field driven ferromagnetic transition a
was calculated by several authors for a 1D Hubbard r
neglecting the orbital contribution.36 For largeU/t ~strong
interaction! the critical magnetic field in the ring depends o
the filling n5N/L through the relationgmBBc5(8t2/
U) n@12sin(2pn)/(2pn)#. In the thermodynamic limit, the
critical field at half-filling isgmBBc5(8t2/U). Qualitatively,
the high value@'11(t2/U)# of the critical field in the finite
2D system is not surprising, since we expect the quan
fluctuations to have a larger disordering effect in 2D s
tems, raising the critical field. More quantitatively, this res
can be understood as follows. The critical field determin
the gap for the triplet excitations in the ferromagnetic pha
At half-filling, the critical field is then determined by
gmBBc5E0(N5L,M5N21)2E0(N5L,M5N) with E0

being the lowest eigenvalue of Eq.~1! for particular values
of N andM . The energy of the spin-polarized state is trivia
E0(N,M5N)52NgmBBc/2. In a strongly interactingM
5N21 case, a spin-down electron will ‘‘attract’’ a spin-u
hole. The energetically favorable configuration on a latt
corresponds to a single site being occupied by the spin-d
electron and the spin-up hole, and all the other sites be
singly occupied by the ferromagnetically aligned spin-
electrons. All the electrons contribute the trivial Zeem
term to the total energy, but the site with the spin-dow
electron and its spin-up neighbors also contributes the
change energyEexch. The total energy of theM5N21
spin-up and one spin-down electrons isE0(N5L,M5N
21)52(N21)gmBBc/21gmBBc/21Eexch. Therefore, the
critical field is determined by the exchange energy,gmBBc

5Eexch. The exchange energy is given byEexch

5(4t2/U) f (d) with f (d) being the number of spin-up
neighbors of the spin-down electron. In a 1D ringf (d)52,
and in large 2D systems on the averagef (d)54 in the
nearest-neighbor tight-binding square lattice. Note t
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our numerical result for Bc in finite 1D rings
(Bc'7.5t2/U) is reasonably close to the thermodynamic
sult (Bc58t2/U).

3. Metal-insulator transition and spin ordering

The charge stiffnessDc that characterizes [Dc50 (Þ0)
characterizes the Mott insulator~metal!# the degree of local-
ization in a Mott-Hubbard system is defined for a 1D ring
L sites to be37–40

Dc5
L

2

]2E0~f!

]f2
. ~26!

Note that, by definition, the charge stiffness is the nega
flux derivative of the persistent current:Dc; ]I /]f. In Fig.
-

f

e

13 we compare the noninteracting and interacting persis
currents calculated in the minimal Hubbard model for t
333 array. The interacting persistent current is suppres
by orders of magnitude at half-filling,n5N/(2L)50.5. This
is a finite-size manifestation of the Mott-Hubbard met
insulator transition asn→0.5 andU/tÞ0. For small values
of the flux the localization effects due to the magnetic fie
are small, and the magnetic response is not strongly affe
by interaction at low filling in the metallic phase as can
seen in Figs. 13~a!–13~d!. The additional discontinuities o
the persistent current in Fig. 13 arise from the total spinS or
from accidental degeneracies that occur with no Zeem
term in the Hamiltonian. In the insulating phase (N59 in
Fig. 13! the persistent current is suppressed by orders
magnitude from its noninteracting value. Apparently, t
ther
art
FIG. 13. The persistent current in the 333 array of quantum dots as a function of flux through a unit cell forU/t50 ~solid line! and
U/t510 ~dashed-dotted line! for N5229 in ~a!–~h!, respectively. The array is modeled in the minimal Hubbard approximation, with o
parameters set the same as in Fig. 2~b!. The correspondingz componentSz of the total spin in a ground state is shown in the bottom p
of the plots, with an arbitrary offset for the illustrative purposes.
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FIG. 13. ~Continued!.
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ground state is described by one set of quantum numbe
a magnetic period, leading to the absence of discontinu
of the persistent current. The magnetic response is param
netic at zero flux. We verify this suppression of the mag
tude and oscillations as well as the paramagnetic natur
the persistent current at half-filling by doing calculations
232, 332, 432, and 333 quantum dot arrays; these r
sults are shown in Fig. 14. The rate of the suppression of
persistent current with the increased strength of the inte
tion U/t in the half-filled 333 array depends on the orbita
magnetic flux. We compare this rate in the 333 array for the
two values of the flux,f/f050.1 andf/f050.4 in Fig. 15.
The magnetic-field localization atf/f050.4 enhances the
effect of the HubbardU/t on the magnitude of the persiste
current, compared to a slower decay of the persistent cur
at f/f050.1.

In the 333 array, the persistent current flows along t
perimeter of the cluster for allN, but the sign of the persis
in
s
g-

-
of
r

e
c-

nt

tent current in the system can be either diamagnetic or p
magnetic. Therefore, a steady paramagnetism that we fin
the half-filled small arrays cannot be understood using
simple analogy with the paramagnetism of the edge state
the corresponding noninteracting system.25 The sign of the
noninteracting persistent current is paramagnetic in the h
filled 232, 432, and 333 arrays and is diamagnetic in th
332 array. The negative charge stiffness in the interact
232 array is consistent with the earlier predictions for
L543 integer ring.38,41 We do not know whether this or
bital paramagnetism is a generic feature of the finite h
filled 2D Hubbard lattices at zero temperature, but our fin
ing is consistent with previous exact diagonalization stud
of the optical conductivity of 434 periodic 2D Hubbard
lattices which also found a negative Drude weight
half-filling.42 We have calculated the distribution of the loc
moments (̂0uŜz,i u0&) in the half-filled finite lattices with the
Zeeman term set equal to zero in the Hamiltonian. T
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ground state of the 333 array belongs to a doublet with th
total spinS5 1

2 and Sz56 1
2 . At U50, the uncompensate

moment in the system is distributed along the diagonals
the lattice. At finiteU, the off-diagonal dots gain opposit
magnetic moments, and the system is antiferromagnetic
ordered. We verified that the magnitudes of the neighbor
moments show a tendency to equalize with increasingU/t.
Therefore, a many-body state in the 333 array at half-filling
represents a finite-size realization of the Mott-Heisenb
insulator40 ~antiferromagnetic at a finiteU/t) ground state in
the system, with a Mott-Hubbard gap opening in the cha
excitations~as manifested in the strong suppression of
persistent current in Figs. 13–15!. The ground state for the

FIG. 14. The persistent current at half-filling in the 232,
332, 432 clusters of quantum dots withS50, Sz50 ground state
and in the 333 lattice with theS5

1
2 , Sz5

1
2 ground state as a

function of flux through the unit cell. A key to each curve is ind
cated in the legend. All of the parameters are set the same as in
2~b!.

FIG. 15. The persistent current as a function of the HubbardU/t
in the 333 array with N5L59 at f/f050.1 ~solid! and
f/f050.4 ~dotted!. The same parameters are used as in Fig. 2~b!.
f

lly
g

g

e
e

evenL lattices is a singlet (S50, Sz50), with all the local
moments being very small. In the 1DL59-site ring
(S5 1

2 , Sz56 1
2 ), we do not find any ordering of the loca

moments. We conclude that in small clean 2D systems
onsite interactions strongly suppress~possibly exponentially
at N5L) the magnetic response asN→L, and forN,L the
onsite interactions have a much weaker destructive effec

B. Extended Hubbard model

We consider first on-site and nearest neighbor off-site
teractions in Eq.~5!. We setVii 5U, andVi j 5V if ( i j ) are
nearest-neighbor dots (Vi j 50 otherwise!. Equation~1! then
has the form of an extended Hubbard model.43–45

The HubbardU by itself leads to a spin-density wav
~SDW! commensurate with the lattice periodicity at ha
filling in a 2D lattice. This SDW state has uniform on-si
charge density,̂r̂ i&51. It is easy to see from Eq.~1! that at
half-filling the off-site interactionV prefers double occu-
pancy on the alternating sites, e.g.,^r̂ i odd&52, and

^r̂ i even&50. The minimum energy configuration for a larg
nonzeroV is the charge-density wave~CDW! state commen-
surate with the lattice. The competition betweenU and V
leads to a SDW-CDW transition in both 1D and 2D ha
filled systems43–45 as V is increased. The mean-field pha
diagram is easily obtained by considering the strong c
pling limits of U andV in Eq. ~1!. The energy of the SDW
state in the half-filled system isESDW5(U/2) N
1 (V/2) Nnn with Nnn being the number of all pairs of nea
est neighbors on a lattice. The corresponding energy of
CDW state isECDW54(U/2)(N/2). The phase transition
line at half-filling in the extended Hubbard model is cons
quently given by

V5Vc5U
N

Nnn
, ~27!

with V,Vc being the SDW state. In the 2D lattices wit
open boundary conditions,Nnn52L2Lx2Ly yields for
largeL, Vc'U/2, and in the 1D ringsNnn5L with Vc5U.
In the usual Hubbard model with periodic boundary con
tions, the corresponding equations for the SDW-CDW ph
transition areVc5(U/4) ~2D! and Vc5(U/2) ~1D!. In the
half-filled 1D finite rings the charge stiffness maximizes
the transition line between SDW and CDW states.44 Intu-
itively, this seems plausible because the persistent curre
sensitive to quantum fluctuations, which are maximized
the phase transition. We find a similar maximization at ha
filling ( N59) of the magnitude of the persistent current
the 333 2D array as a function of the off-site interactionV/t
~Fig. 16!. The persistent current is strongly suppressed
both sides of the SDW-CDW transition while being e
hanced at the transition point. The current also changes
at the transition and is more strongly suppressed deep in
CDW phase for largeU/t. The critical interaction strength
Vc50.65 at which the finite size SDW-CDW ‘‘transition’
occurs in the 2D array does not depend on the orbital m
netic flux ~for U/t510), which is qualitatively consisten
with the mean-field and strong-coupling results. The shap
the peak in Fig. 16, however, depends strongly on the orb

ig.
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magnetic flux—the transition at a flux off/f050.4 showing
a larger enhancement than that atf/f050.1.

The SDW-CDW transition in a 1D extended Hubba
model is found43 to be a second-order phase transition
U/t,Uc /t53, and a first-order transition forU/t.Uc /t.
For example, the order parameter of the CDW st
p5(1/N)( i(21)i^r̂ i& is nonzero in both SDW and CDW
phases forU.Uc .43,44 A recent mean-field calculation o
the SDW-CDW phase diagram finds the transition to be fi
order ~i.e., discontinuous in the order parameter! for all val-
ues of U and V.45 In the 333 system finite-size effect
dominate for weak coupling, and the persistent current p
position depends on the orbital flux forU/t&3. We have
calculated the persistent current as a function ofV/t for
U/t53, 5, 7, 10, 20, and 30 in the half-filled 333 array and
obtained the finite-size SDW-CDW phase diagram, which
shown in Fig. 17. The slope of'0.68 of the linear fit to the
data in Fig. 17 approximately agrees with the value 3/4 p
dicted within the strong-coupling theory.

With the inclusion of the longer-range~beyond neares
neighbors! off-site interactions in our calculations, we fin

FIG. 16. The persistent current as a function of the near
neighbor off-site interactionV/t in the 333 array withN5L59
and U/t510 at f/f050.1 ~solid! and f/f050.4 ~dotted!. The
same parameters are used as in Fig. 2~b!.

FIG. 17. A phase diagram of the finite-size SDW-CDW tran
tion in the 333 array withN5L59 is shown for the on-site and
off-site nearest-neighbor interactionU/t and V/t at f/f050.1
~squares! andf/f050.4 ~triangles!. The same parameters are us
as in Fig. 2~b!.
r
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that the spin antiferromagnetic order is destroyed in the fin
333 array with the electron density distribution remainin
uniform. We set the values ofVi j using the classical capac
tance matrix formalism7,8 as explained in Sec. II, and sho
in Fig. 18 our calculated persistent current at half-fillin
(N59) as a function of V/t5(U/t)(C/Cg), with
U/t5(e2/Cg)/t510 being fixed in the 333 array. An im-
portant conclusion from Fig. 18 is that strong long-ran
interactions could enhance the magnitude of the persis
current back to its noninteracting half-filled value, there
effectively negating the Mott-Hubbard localization effec
Whether this is a general result~i.e., valid even in the ther-
modynamic limit! or purely a finite-size effect is not clear a
this stage. The intermediate values of the long-range inte
tion do not significantly modify the persistent current f
N,L. This can be seen in Fig. 19, where we compare
(U/t510, V50) and (U/t510, V/t55) persistent curren
for various filling fractions in the 333 array. Our results can
be understood on the basis of the dependence of the inv
capacitance matrix elements on the relative ratio ofC/Cg .
For simplicity, let us discuss this dependence in a double-
array. In the limitC/Cg!1, the interdot and intradot inter
action matrix elements areV125U(C/Cg)→0 andV115U.
For C/Cg@1, these matrix elements areV125U/2 and
V115(U/2)(11Cg /C)→U/2. The large ratio ofC/Cg in the
latter case effectively describes a single composite system
this limit all elements of the inverse capacitance matrix b
come equal. Thus the electrons become totally uncorrela
and the only effect of interactions is to give an overall cha
ing energy to the system. Our results suggest that in a fi
system with weakly screened interactions the SDW-CD
transition may not occur, but the persistent current could s
be enhanced to its noninteracting value.

VII. DISORDERED QUANTUM DOT ARRAYS

A. Noninteracting case

In this section we consider the effect of random disord
on the persistent current in the finite 2D quantum dot latti

t-

-

FIG. 18. The persistent current as a function of the long-ra
off-site interaction V/t5(U/t)(C/Cg) in the 333 array with
N5L59 andU/t510 at f/f050.1 ~solid! and f/f050.4 ~dot-
ted!. The same parameters are used as in Fig. 2~b!.
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in the spin polarized regime@see Figs. 2~a!, 4, and 7 as
examples of clean system spectra in this regime#. We include
disorder in our calculation through a spin-independent
rameterW that denotes the half-width of a uniform distribu
tion of random on-site quantum dot energies centered aro
D. The random on-site single-particle energies are set a

« i5D1d« i , d« ie@2W/2,W/2#. ~28!

The introduction of disorder could, in principle, lead
Anderson localization in the system, with all electronic sta
being exponentially localized in the presence of stro
disorder.20,46 In general, disorder (W) and interaction (U,V)
compete in determining the electronic properties of the
sultant (W,U,VÞ0) Mott-Hubbard-Anderson model. Disor
der introduces two related length scales in the problem
-

nd

s
g

-

a

mean free pathl (W) and a localization lengthj(W). „In the
absence of any interaction, in two dimensions for a we
disorder the localization length j(W) depends
exponentially20 on the mean free path asj5 l exp@pkFl/2#
with kF being the Fermi wave vector whereas in one dime
sion j; l .… Scaling and perturbative arguments predict th
for weak disorder~and in the absence of interaction! the
conductance of a 2D lattice of size (L)2 depends logarithmi-
cally on the mean free path whereas for strong disorde
falls off exponentially with the system size ass(L)
;exp(2L/j). We find two similar weak- and strong-disorde
regimes in the behavior of the persistent current as a func
of the disorder strengthW, indicating a connection betwee
the persistent current and the dc conductance of the finite
system. In one dimension Anderson localization occurs@i.e.,
the
itrary
FIG. 19. The persistent current in the 333 array of quantum dots as a function of flux through a unit cell forU/t510 and long range
interactionV/t55 ~solid line! andU/t510, V/t50 ~dashed-dotted line! for N5229 in ~a!–~h!, respectively. Other parameters are set
same as in Fig. 2~b!. The correspondingSz component of the ground-state total spin is shown in the bottom part of the plots, with an arb
offset for the illustrative purposes.
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FIG. 19. ~Continued!.
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s(L);exp(2L/j)] in the presence of any finite disorder,20

and the persistent current amplitude is exponentia
suppressed14 for all W. In Fig. 20 we show the calculate
log-log plot at half-filling of the root-mean-square curre
^I 2&1/2, averaged over 100 disorder realizations for ea
value of W, as a function of the disorder strengthW for
various array sizes (333, 434, 535, 636). In plotting
these results, we have factored out a scale factor,nc /L
5(L1/221)2/L, so that the results for various system siz
fall on top of each other, showing approximate scaling w
system size and disorder.@The scale factornc5(L1/221)2 is
the number of unit cells or plaquettes in each square arra
sizeL.# The two dashed straight lines in Fig. 20 give the b
fits to weak and strong disorder scaled currents, leadin
the following empirical results for the effect of disorder o
the persistent current:^I 2&1/25(L/nc)g(W), with the scaling
function g(W) being given by
y

h

s

of
t
to

g~W!;H W2g, g5~6.462.8!31022, W,1.55pt

W2b, b51.8460.49, W.1.55pt. J ~29!

We note that the empirical scaling defined by Eq. 29~and
shown in Fig. 20! is consistent with well-known noninterac
ing scaling localization result of there being logarithmic 2
localization at weak disorder.

B. Interacting case

Random disorder effects on the persistent current
subtle in the presence of on-site interactions in the 333
array: they depend both on the filling in the array and
relative ratioU/W. Away from half-filling, the random dis-
order suppresses the magnitude of the current and smoot
its discontinuities arising from level crossings of energ
with different orbital quantum numbers. TheSz oscillations
and the corresponding discontinuities in the current in
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metallic phase persist in the presence of intermed
(W&U) disorder. Hubbard interaction effects are not p
ticularly important at high disorder, which is what is seen
Fig. 20 ~asterisks! for the typical interacting current even a
half-filling. The intermediate disorder (W,U) produces an
antilocalization effect at half-filling by enhancing the pers
tent current from its finiteU-suppressed value as can be se
in Fig. 21~a! and 21~b!. We also observe that the disorder
persistent current is enhanced in the presence of the
range interaction from itsU-suppressed value as can be se
in Fig. 21~c!. Finally we note that the presence of disord
does not reverse the roles of the weak and strong orbital fl
the relative behaviors of persistent current atf/f050.1 and
f/f050.4 in Fig. 21 can be compared with those for cle
systems plotted in Figs. 15 and 18.

VIII. CONCLUSIONS

We calculate the persistent current and electron addi
spectrum in coherent two-dimensional semiconductor qu
tum dot arrays and one-dimensional quantum dot ri
pierced by an external magnetic flux, using the exact dia
nalization and the Bethe ansatz techniques within an
tended Mott-Hubbard Hamiltonian. We find that the magn
tization density of a finite multidot array is periodic in th
magnetic flux. In weak fields, we find fluxperiodic oscilla-
tions in theSz component of the total spinS. We have in-
cluded in our model the effects of both intradot/interdot Co
lomb interactions and random disorder. We find that
persistent current is suppressed in the antiferromagn
Mott-insulating phase. The finite-size realization of the s
density wave–charge density wave ordering transition
been found to maximize the 2D array persistent curren
half-filling at the critical value of the nearest-neighbor inte
action, a behavior qualitatively similar to the charge stiffne
of 1D rings.44 We obtain the phase diagram for the SDW
CDW transition. We demonstrate that the electrostatic lo
range interdot interactions enhance the magnitude of
Mott-insulating phase persistent current to its noninterac
system value. We find that the noninteracting persistent
rent as a function of the random disorder strength exhibi
behavior similar to that of the conductivity20 of the system: it

FIG. 20. A log-log plot of^I 2&1/2 vs W averaged over 100 dis
order realizations for each value ofW is shown (U5V50) at
half-filling in 333 ~crosses!, 434 ~triangles!, 535 ~solid line!,
636 ~pluses!. Asterisks show the interacting (U/t510,V50) re-
sults at half-filling for the 333 system.
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is strongly suppressed only at large disorder strengths.
Anderson-Mott transition46 has been found to have a subt
effect on the persistent current in the 333 array at half-
filling: the intradot Coulomb interaction less than or comp
rable to the disorder strengthW (U&W) increases the dis
ordered system persistent current.

We believe that the 2D persistent current physics in
333 array discussed in this paper has already been i
rectly observed in transport measurements in a 333 array of
strongly coupled quantum dots fabricated by means
square grid gate structures on top of a GaAs/AlxGa12xAs
heterostructure.5 In low magnetic fields (B,1T) at T'40
mK the three conductance minima were measured in Re
at B50.18, 0.48, and 0.80 T, and superimposed on th
minima small oscillations periodic inB with period of 12
mT, 21 mT, and 24 mT were seen5 in the measured magne
toconductance of the 333 array. The large conductanc
minima were interpreted to be due to the classical locali
orbits in the array, with the cyclotron radius of each or
being equal toRc5m* vF /eB, with Rc5330, 125, and 75

FIG. 21. The persistent current as a function of~a! and ~b! the
Hubbard U/t, ~c! the long-range off-site interactionV/t
5(U/t)(C/Cg) ~with U/t510) in a disordered 333 array with
N5L59 and atf/f050.1 ~solid! and f/f050.4 ~dotted!. The
persistent current is averaged over 10 disorder realizations.
disorder strengthW is indicated in the plots. The same paramete
are used as in Fig. 2~b!.
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nm in the three minima, respectively. The measured pe
of small oscillations was attributed to a reduction of a sin
classical orbit Aharonov-Bohm period due to the coupli
between all possible classical orbits with a givenRc in the
lattice. We suggest here an alternative explanation of
experiment. First, the observed large conductance min
correspond to the first three Landau orbits being commen
rate with the size of a single dot. The semiclassical cyclot
radii, Rn5A(\/eB)(2n11), are 60.5 nm~n50!, 64 nm
~n51!, and 64 nm~n52! for the three conductance minima
respectively. Therefore, we estimate the radius of each do
63 nm~which is reasonably consistent with the other dime
sions of the array!. These minima should be observed f
temperatures for which\vc<2kT yielding T'1.8 K, which
is consistent withT52 K where the large conductanc
minima start to be affected by the temperature.5 We agree
with the experimentalists that the shorter period oscillatio
are due to the coupling of the electron orbits in the latti
But we think that the contributing orbits originate from th
quantum mechanically required gauge invariance in the
perimental phase coherent system. These orbits arise d
electron hopping between the localized states of each
We estimate that the magnetic flux corresponding to one
quantumf0 piercing a unit cell of the lattice is'46 mT
~with a lattice constant ofa'300 nm!. For the density of the
2DEG and the estimated size of the dot, the number of e
trons in each dot is'5. Considering one mobile electron
the Fermi energy in each dot, the experimental 333 array
approximately corresponds to our 333 array at half-filling
~in the situation of the weakly screened long-range Coulo
interactions!. The persistent current in our case is found
oscillate with a period off/f050.25 and 0.5@see Figs.
13~h! and 19~h!#, which corresponds toDB511.5 and 23
mT, which are consistent with the experimentally measu
values.

Finally, we emphasize three essential limitations of o
work which may~generally! restrict its quantitative applica
bility to realistic quantum dot arrays~we do believe that our
results describe well the qualitative aspects of coherent
collective physics in semiconductor quantum dot arrays!: ~1!
we ignore completely the complicated~and interesting! de-
tails of single dot electronic structure, approximating the
ergy level in each dot by two spin-split energy levels d
scribed by the simple Fock-Darwin-Zeeman model;~2! we
use the Mott-Hubbard model in treating interaction and c
relation effects~both intradot and interdot!—such a simple
parametrization of Coulomb correlations may not ap
quantitatively in real quantum dot arrays;~3! we have con-
sidered only small~no more than nine dots! finite arrays,
being limited entirely by the exponentially growing Hilbe
space size in our extended Hubbard model. While we se
particular hope of going beyond these approximations in
near future, we should emphasize that these limitations
not substantially restrict the qualitative applicability of o
results to thecoherent collectivephysics of quantum dot ar
rays. For example, currently fabricatedcoherentquantum dot
arrays typically contain only two to four quantum dots, a
therefore our finite-size calculations are, in fact, perfec
appropriate. Also, the basic physics of Coulomb blocka
and quantum fluctuations are entirely captured in our
tended Mott-Hubbard model, and the complications of sin
d
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dot energetics~beyond that of two-level Fock-Darwin
Zeeman physics! can usually be distinguished from the co
lective physics of interest to us. Finally, some of our non
sential approximations, for example, restricting to ze
temperature and using a constant interdot hopping amplit
t, can easily be relaxed in future calculations if such a ne
arises. We emphasize here that these nonessential app
mations do not affect our qualitative conclusions in any s
nificant manner. We believe that the extended finite Mo
Hubbard model as used by us is the appropriate mini
model which should form the basis of discussing the coll
tive and coherent physics in mesoscopic semicondu
quantum dot arrays. We feel that the direct observation
equilibrium persistent current and spin oscillations in coh
ent quantum dot square lattices and rings will shed light
the interplay among the single dot physics, coherence, di
der, long- and short-range Coulomb interaction effects
quantum phase transitions that we discuss in this paper.
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APPENDIX: GROUND-STATE ENERGY OF A HUBBARD
RING ENCLOSING A MAGNETIC FLUX

Here we analyze the ground-state quantum number di
bution of a Hubbard ring that we obtain by solving nume
cally the Bethe ansatz, Eqs.~21!–~24!, for all N,L,
M5N/2, andM5N/221.

a. N54n12, M52n11, and M52n, For N54n12
and M52n11 the ground-state distribution at a fluxf>0
is given by35

$I j%52
~N21!

2
,2

~N21!

2
11, . . . ,

~N21!

2
, and

~A1!

$Ja%52
~M21!

2
21,2

~M21!

2
, . . . ,

2
~M21!

2
1p21,2

~M21!

2

1p11, . . . ,
~M21!

2
. ~A2!

In Eq. ~A2! the positionp of a hole in the distribution of the
spin rapidities varies fromp50 to p5M within one half of
a magnetic period, andp50 corresponds to the ground-sta
distribution atf50. The ground-state distribution for nega
tive values of the flux is obtained by shifting allJa to the
right by one unit. The momentumP of the state is given by
the momentum q of the spin-wave excitationP5q
52 (2p/L) p. Thus, the total momentum is zero at ze
flux and then takes the values of all consecutive multiples
2(2p/L) within one-half of a magnetic period, with th
momentum being equal to (L/2p) P52M52(N/2) at
f/f050.5. The distribution in Eq.~A2! is valid for N,L;
for N5L the distribution of both the charge and spin qua
tum numbers remains symmetric at a nonzero flux. Si
(L/2p)Pmax52 (N/2), in the limit of largeU/t the ground
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state energy hasN cusps atf/f056(p11) (1/2N), and the
persistent current is diamagnetic atf/f056p (1/2N). It
was proved by Stafford and Millis38 that the N54n12
ground state of the electron system under periodic bound
conditions is a spin singlet ~total spin
S50) at f50, and it can be either a spin triplet~total spin
S51) or a singlet atf50.5f0 ~a flux value where the an
tiperiodic boundary conditions are realized!. In theL59-site
Hubbard ring we find that atf50, the ground state is a spi
singlet, and atf50.5f0 it is a spin triplet withS51. At
f50.5f0, the ground state, therefore, has a (2S11) spin
degeneracy.

The energy of theN54n12 andM52n (Sz51) state is
higher than the ground-state energy of the singlet stat
f50 @as an example, see Fig. 11~d! for N56, M53, and
M52]. The energy of theSz51 state atf>0 is minimized
by choosing the ground-state distribution as

$I j%52
N

2
,2

N

2
11, . . . ,

N

2
21, and ~A3!

$Ja%52
~M21!

2
, . . . ,

~M21!

2

2p,2
~M21!

2
2p12, . . . ,

~M21!

2
11. ~A4!

In Eq. ~A4! the positionp of a hole in the distribution of the
spin rapidities varies fromp5M to p50 within one half of
a magnetic period, andp5M corresponds to a ground-sta
distribution atf50. The charge degrees of freedom conta
a nonzero momentum (L/2p) r 52 (N/2) in the system, and
the spin rapidities are positioned in the Fermi sea to m
mize the total momentum atf50. The vacant hole in this
system is also within the Fermi bounds. The total moment
of the state described by Eqs.~A3! and ~A4! is (L/2p) P5
2@(N/2) 2p#. Thus, atf50 andf/f050.5, the minimum
and maximum momenta are (L/2p) P521 and (L/2p) P
52 (N/2), respectively. Within our numerical accuracy w
do not find that the excitation can create a zero total mom
tum atf50 in the range of the interactionU/t values from
0 to 200. Therefore, atf50, there is a cusp correspondin
to the crossing of equal and opposite minimum momen
and the ground-state energy has a total ofN21 cusps per
magnetic period. The spin quantum numbers of theN5L
ground state remain symmetric in a magnetic period. T
Sz50 and theSz51 states have the same total momenta
the last segments of the energy curves that includef
50.5f0. This is a situation for theN56, M53 andN56,
M52 states in theL59-site ring atf50.5f0 in Fig. 11~d!.
The total spin of theM52 system does not change in
magnetic period and is equal to 1. The degenerateM53 and
M52 states belong to a spin triplet in the segment of
energy curve centered atf50.5f0. We conclude that the
magnetic flux changes the total momentum of a state seq
tially by one unit from one parabola segment to another~for
smaller values ofU/t, particular values of the total momen
are missing in the ground state35!. Each energy parabola seg
ment has a fixed value of the total spin, which may or m
not change with a change of the total momenta. The
tended degenerate nonzero total spin regions are not spe
ry

at
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a,

e
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e

n-

y
x-
ific

to the ground state of theN54n12 systems. They occu
whenever the magnetic field drives the systems with diff
ent Sz through a series of the consecutive total moment
states to the flux region where the ground state has a non
total spinS and the differentSz states thus have the sam
total momenta.

b. N54n, M52n, and M52n21. For N54n (N,L)
and M52n the ground-state distribution at a fluxf>0 is
the same as forN54n12 andM52n case that is given in
Eqs. ~A3! and ~A4!. In the current situation, a spin wav
excitation is above the Fermi sea, and the minimum mom
tum is (L/2p) P52@(N/2) 2M #50 at f50. The ground-
state energy hasN cusps in a period,35 and the persisten
current is diamagnetic at thef/f056p(1/2N). The ground
state distribution forN54n andM52n21 is given in Eqs.
~A1! and ~A2!. For largeU/t, an excitation above the nega
tive Fermi sea of spin rapidities can be created, so the
mentum atf/f050.5 is (L/2p) P52 (N/2). The Sz50
and Sz51 states can have the same minimum mome
P50 at f50. In Fig. 11~c! for N54 electrons in the ring,
the energy parabolas ofM52 andM51 belonging to the
spin triplet (S51) states are coincident in theP50 mag-
netic flux region centered atf50. For N58 in Fig. 11~e!
the levels of theP50 momentum triplet state (S51, Sz
51) and (L/2p) P564 singlet state (S50, Sz50) cross in
the vicinity of f50 and are nondegenerate atf50.

c. N54n11, M52n, and M52n21. For N54n11
(N,L) andM52n electrons in a Hubbard ring, both sets
I j andJa are integer numbers. To accommodate the variat
of the total momenta, two holes are present in the grou
state distribution at a nonzero positive flux:

$I j%52
~N21!

2
,2

~N21!

2
11, . . . ,

~N21!

2
, and

~A5!

$Ja%52
~M22!

2
, . . . ,2

M

2
1p222,

2
M

2
1p2 , . . . ,0, . . . ,p121,p111, . . . ,

M

2
.

~A6!

In Eq. ~A6! the positionp1 of a hole in a distribution of
spin rapidities varies fromp150 at f50 to p15M /2 with
p2 being fixed atp250. While the holep1 transverses from
0 to M /2, the momentum varies from 0 to2(M /2). A fur-
ther increase of the momentum is accomplished through
motion of the second holep2 from 0 to (M /2)21 with p1
being fixed at M /2. The total momentum becomesP
52 (2p/L) M at f/f050.5. Therefore, in the ground-stat
distribution there is always one hole that moves. We sh
the energies for consecutive values of the total momentum
a L515 ring for n52 and L59 ring for n51 for U/t
5200 in Figs. 12~a! and 12~b!, respectively. The ground
state energy curves in Figs. 12~a! and 12~b! consist of theN
consecutive momentum states within a magnetic period.
earlier analysis of the persistent current in a Hubbard ring
not emphasize the dynamics of the total momentum, and
and Fowler mistakenly concluded that their Eq.~3.13! de-
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scribes the ground-state distribution for any nonzero fl
and that at the one-half flux quantum all theJa’s have to be
consecutive integers.35

The charge and spin quantum numbers are half-odd i
gers forN54n11 andM52n21 electrons in a ring. The
ground state distribution atf>0 for n.1 is given by

$I j%52
N

2
,2

N

2
11, . . . ,

N

2
21, and ~A7!

$Ja%52
M

2
, . . . ,2

M

2
1p221,2

M

2

1p211, . . . ,2
1

2
, . . . ,2

3

2
1p1 ,

1

2

1p1 , . . . ,
M

2
11. ~A8!

In Eq. ~A8! the holep1 moves from 0 to (M13)/2 with p2
being fixed atp250, and then the holep2 moves from 0 to
(M23)/2 while p15(M13)/2. The motion of the holes in
the distribution of the spin rapidities leads to a cancellat
P
v

e

-

.

r

.

J

v
.

n

,

e-

n

of the 2N/2 momentum concentrated in the charge degr
of freedom at zero flux and the consequent integral decre
of the total momentum. In theL59 ring with N55 elec-
trons, for the value of the interactionU/t510, the states
M52 and M51 have different values of the total spi
S5 1

2 and S5 3
2 and the total momenta (L/2p) P521 and

(L/2p) P522, respectively. These states are nondegen
ate, and there are no oscillations of the total spinSz in the
ground state of theL59, N55 Hubbard ring.

d. N54n21, M52n21, and M52n22. The lowest-
energy state forN54n21, M52n21 is obtained by choos
ing the distribution of quantum numbers that is given in E
~A7! and~A8!. At zero flux, the holep1 starts moving from
Ja5 1

2 , and it moves (M11)/221 consecutive steps to th
right. In the remaining flux region the holep2 transverses to
the right in (M21)/221 consecutive steps. The distributio
in theM52n22 case is given in Eqs.~A5! and~A6!. In this
case the holep2 moves until the total momentum becom
2(N11)/2 atf/f050.5. At f50 for N53 electrons in a
L59-sites ring in Fig. 11~b!, the two lowestM51 and
M50 energy states with momentumP50 and the total spin
S5 3

2 are degenerate in thef50 region.
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