PHYSICAL REVIEW B VOLUME 58, NUMBER 7 15 AUGUST 1998-I
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The ground-state persistent current and electron addition spectrum in two-dimensional quantum dot arrays
and one-dimensional quantum dot rings, pierced by an external magnetic flux, are investigated using the
extended Hubbard model. The collective multidot problem is shown to map exactly into the strong-field
noninteracting finite-size Hofstadter butterfly problammthe spin polarization transitianThe finite-size Hof-
stadter problem is discussed, and an analytical solution for limiting values of flux is obtained. In weak fields we
predict interesting flux periodic oscillations in the spin component along the quantization axis with a period-
icity given by vh/e (v<1). The sensitivity of the calculated persistent current to interaction and disorder is
shown to reflect the intricacies of various Mott-Hubbard quantum phase transitions in two-dimensional sys-
tems: the persistent current is suppressed in the antiferromagnetic Mott-insulating phase governed by intradot
Coulomb interactions; the persistent current is maximized at the spin density wave—charge density wave
transition driven by the nearest-neighbor interdot interaction; the Mott-insulating phase persistent current is
enhanced by the long-range interdot interactions to its noninteracting value; the strong suppression of the
noninteracting current in the presence of random disorder is seen only at large disorder strengths; at half-filling
even a relatively weak intradot Coulomb interaction enhances the disordered noninteracting system persistent
current; in general, the suppression of the persistent current by disorder is less significant in the presence of the
long-range interdot Coulomb interactidr50163-182608)00531-1

I. INTRODUCTION 20—-200 nm range One goal is to identify experimentally
observable features of various Mott-Hubbard quantum phase
In this paper we consider an array of coherentlytransitions(including realistic disorder and interaction ef-
coupled™ semiconductor quantum dots arranged in finitefects in semiconductor quantum dot arrays.
two-dimensional2D) square lattices or 1D rings pierced by = The importance of electron-electron interaction has been
a magnetic flux oriented normal to the lattice or the ringstressetf18in the literature in the context of persistent cur-
plane. At low temperatures, these quantum dot arrays may brent experiments in 1D gold and semiconductor rihghe
considered “artificial molecules’{with individual quantum  magnitude of the persistent curréim disorderedgold rings
dots being the “atomic” constituents of these artificial mol- was found to be one to two orders of magnitude larger than
ecule$ because the electron phase coherence length is corthat theoretically predicted, whereasdlean semiconductor
parable to the array linear size. Theoretical work on multidotrings the magnitude of the persistent current was found to be
systems has mostly concentrated on the two limiting situain a good agreement with the theoretically predicted simple
tions: coherent dots with no Coulomb interacfi@nd Cou-  noninteracting value ofv /L (with v¢ being the Fermi ve-
lomb blockade of individual dot§® In this paper, we con- locity of electrons moving in a ring of length, in our no-
sider quantum dot arrays taking into account quantumationlL denotes the size of the system as defined by the total
fluctuations arising from interdot hopping, electron-electronnumber of dots in it Although the interplay between disor-
interaction, and random disorder effects through an extendeder and Coulomb interaction in determining the magnitude
Hubbard-type Hamiltoniaf of the persistent current in ring topologies is the subject of
In a previous papet; we reported on our prediction of an many recent theoretical investigatiolfs;:* the issue re-
equilibrium persistent currenin finite 2D dot arraygwith- mains unsettled. Disorder and interaction effects are natu-
out any periodic boundary conditions the presence of an rally included in our Mott-Hubbard model of finite quantum
applied magnetic field transverse to the 2D plane. In thislot arrays, and we will comment on their influence on the
paper we provide details and expand on our previous workpersistent current.
and present results for the electron addition spectrum and the The paper is organized as follows. In Sec. Il we define
persistent current in 2D square lattices and 1D rings includand describe the extended Mott-Hubbard Hamiltordian,
ing effects of collective physics arising from the multiple dot which forms the basis of our theoretical description of the
structure of the system within a simple model for the single-collective physics in finite quantum dot lattices. In Sec. IlI
particle physic¥ of the individual quantum dots. One of our we present our calculated electron addition spectrum as a
primary motivations is to understardttice effects on the function of the externally applied magnetic flux for &3
persistent current and the electron addition spectrum, the latattice and arL =9 —site ring, and identify the main features
tice here being thartificial lattice defining the 2D or the 1D of these results, which are studied in subsequent sections. In
guantum dot arraywith the typical lattice constant in the Sec. IV we clarify the physical meaning of the magnetic-
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field dependence of the addition spectrum by making use gbarticles is accomplished through the tunneling of the quasi-
the equivalence between the derivative of the Hamiltoniarparticles from a nearby backgate electrode. The excess
with respect to the flux and the magnetization dengity  charges are shared among all dots in the array in a molecu-
equivalently, the persistent currémperators. In Sec. V we larlike fashion by quantum-mechanical tunneling, i.e., our

study the energy spectrum and the persistent current of th@uantum dot array is coherent. The equilibrium properties of
finite open 2DL X L tight-binding lattices oL noninter- q_uantum dot arrays we investigate in this work can, in prin-

acting quantum dots. We also discuss in this context th&Ple, be measured through experiments on semiconductor

Hofstadter spectrum of an infinite tight-binding lattice. We dot arrays using available experimental techniques: tunneling

establish a connection between the ground-state magnetizg‘-"lnSport spectroscopy, e'q.unllbnum capacitance
Spectroscopy, and equilibrium magnetization

tion in the lattice and in the continuum 2D system by iden- &

tifying the different regions in the energy spectrum in a |at-MeasUrements. . .

tice, and illustrate them with the calculated distributions of The Ha.\mllyoman of an isolated array bfcqupled quan-
the persistent current on a X35 lattice. We also solve the tum dots is given by the sum of three terms:
problem exactly for lattices of arbitrary sizes in the two lim- _ _

iting situations of the fluxp)=0 and¢=0.5¢, per unit cell Harray=(KE)sp® (KE)nopt Vint @
(with ¢o=h/e being the fundamental flux unjtand classify The (KE)s, term in Eq. (1) includes all intradot single-
the ¢=0 states using group theory and perturbation theoryparticle effects(including confinement contributiorand is
We also discuss in Sec. V our results for the noninteractingiven by
persistent current in 1D rings. In Sec. VI we study the elec-

tron addition spectra of interacting lattices in a magnetic T
field. In Sec. VIA we study intradot Coulomb interaction (KE)Sp:% gia(B)C iaCia - 2
effects within the minimal Hubbard model approximation. In '

particular, we study th@eriodic oscillations of the compo- In Eq. (2) the summation is over all dots c';,(c;,) is a
nentS, of the total ground-state electron spin along the quancreation(annihilatior) operator for a quasiparticle on thth
tization (z) axis of the 2D Hubbard model using the Lanczosdot in a statea. The single-particle magnetic-field depen-
exact diagonalization technique, and by solving the Bethelence is included in Eq2) through the usual Fock-Darwin-
ansatz equations in 1D rings. We reanalyze the persiste@teeman scheme as

current results in a 1D Hubbard ring, and find that the inter-

acting system behaves assigle particleby changing its €ia
total orbital momentum sequentially as a function of the flux.

! ; ith w.=eB/m* being the cyclotron frequency. The con-
The details of our Bethe ansatz analysis for the 1D HUbbarﬁlnement potential of a quantum dot is known to be approxi-
ring spectrum are given in the Appendix. In Sec. VI A we

also discuss the finite-size realization of the Mott-Hubbard 2 pa_lrabo_hé_ The single Eartlcle intradot level spacing
. " . L at zero field is taken to bA =fw, (With wy essentially
metal-insulator transition and magnetic ordering in finite 2

X2, 32, 4x2, and 3¢3 quanium dot clusterith L—4, o9 harmonic oscilator requencie consider a single
6, 8, and 9 dots, respectively, in the sysjem Sec. VI B we pin-sp P ) ' g:

discuss the spin density wave—charge density wave orderi zpond fo the spin up/down lowest confined quantum dot

oo . g "Bvel. We neglect correlations arising from single-particle
transition in a half-filled 2D % 3 array in the presence of the level crossing% that have to be takenginto accougnt fgr fields
nearest-neighbor interactions. We find an enhancement Q rger thanB=[g*(g* + 2m/m*)]~ YA/ ug), and concen-

the persistent current along the transition line. In Sec. V“’t{ate on the collective physics in the array.

we consider random disorder effects on the 2D persistent™ o nearest-neighbor tight-binding approximation, the
current. We find that the noninteracting persistent current a?unneling energy is given by

a function of the disorder strength shows a behavior similar
to that of the conductivity® it is strongly suppressed only at
large disorder strengths. We obtain an empirical scaling (KE)hop= > (taeid’ijc’rmcjaJr H.c), (4)
function for the persistent current as a function of the disor- (L.j)a

der strength. Finally, we discuss the effects of having bothyhere t,=t are the tunneling amplitudes ana;;
disorder and Coulomb interaction on the 2D persistent cur-_

. . . =(elh) [;;A-T;; is the Peierls phase fact®rwith A as the
irzearl‘ttic;rr: ttr(]e?:hﬁguzrr?/\)//eb)éof(:llr:%éh\?vilfr?gcéﬂfn?r)l(:s g;agl?rn?el'_magnetic vector potential. The indiceg denote the spatial

sults in Sec. VIII. positions of the dots. Thd«E)hopterm_define_s the topology
of the array. We model a one-dimensional rind_afjuantum
dots with a total magnetic fluy piercing its enclosed area
and a two-dimensional square lattice b¥=L,XxL, with
open boundary conditions with a magnetic flgxpiercing

We model anisolatedfinite system(“array” ) of coher-  €ach unit cellof the lattice. _ _
ently coupled(nominally identical semiconductor quantum _ The third term in Eq(1) defines the intradot and interdot
dots arranged in one-dimensional rings or two-dimensionafoulomb interactions between quasiparticles,
rectangulan‘square”) lattices at zero temperature. We as- Vv
sume that the charging of an otherwise electrically neutral V2 :E Jin e 5
. . . int— & PiPj» 5
guantum dot array with a fixed numbBf of excess quasi- 7 2

L

ea=h[(0/2)%+ wo? ]2+ (—1)“geusBl2  (3)

1. MODEL
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where ﬁizEacTiacia is the number operator for thith
guantum dot. The interaction constants are related to the ca-
pacitance matrix of the quantum dot array by
Vij :(C_l)ij , where Cii :Cg+ N,C and CI] =—C for
nearest-neighbor dots:® The capacitanc€, represents the
capacitance of a quantum dot with respect to the external
gates, whileC denotes the capacitive coupling between the
ith dot and theN; neighboring dots. Equatiofl) thus has the
form of an extended Hubbard model with screened long-
range interactions. FOC<C,, the interaction matrix ele-
ments fall off asVij~U(C/Cg)"‘”. We include the effects

of short-range interactions, keeping only the on-site interac-
tion U and the nearest-neighbor interactidh We use
t=0.1 meV,A=3t, andU=10t in our calculationqunless
otherwise statgdas a representative set of Hubbard param-
eters describing the GaAs dot arrays. The Hamiltonian given
by Eqgs.(1)—(5) has been used earlier to describe coherent 1D
guantum dot chains with open or periodic boundary
conditions>*° (Inclusion of disorder in our model will be
discussed in Sec. V)N.We calculate the electron addition
spectrum by doing an exact diagonalization of Eq.in the
subspace of the total number of quasipartidlem the array
and the total spin compone8; [=—3(N—M)+3M with

M being a number of spin-up electrdrelong the external
magnetic fieldB. The Hilbert space of Eql) with fixed N
andsS, grows exponentially with the system size. We use the
Lanczos method for our exact diagonalization of Ed1),

and carry out a ground-state energy minimization ddeto

find the stable ground state for a givlin The largest matrix
size that we have considered is 15 87@hich corresponds

to the interacting- =9 (or 3X 3) dot array at half-filling for
N=L=9. We also calculate the energy spectrum of one-
dimensional rings in the limi€=0 (V; =U#0, V;;=0) by

(un = ha)/t STN) + N = 1 (ux = ho)/t

S'alN) + N = 1

LY
= I Ut I R

o ! z

F = U '

L -

| |

0 1 2 3 4 5
o/%0

solving numerically the corresponding Bethe ansatz exact g 1. (@ [(¢)] A chemical potentiaky, as a function of flux

solution equations.

in units of ¢o=h/e through an elementary cdla ring in (c)] of a

3X3 quantum dot latticdnine-site ring in(c)] with N(=1-9)

Ill. ELECTRON ADDITION SPECTRUM

excess quasiparticles in the minimal Hubbard model approximation;

L ) . . (b) [(d)] A correspondingz componentS, of the ground-state totall
~ By definition the chemical potentigky of the array is  spin as a function ofs. The magnetic flux is rescaled by 1/32 to
given by show the entire dynamics of the spectrum on one flux scale as
explained in the text. Insets: The critical magnetic fkix of the
n=Eo(N) —Eo(N—1), (6)  spin polarization transition as a function of the electron filling
n=N/(2L) in the arrays.

where E¢(N) is the minimum eigenvalu@.e., the ground-
state energyof Eq. (1) in a space of fixedN and all allowed

M. The addition spectrum of the system is thg— N plot, from an aperiodic single-particle background contribution,
which we show in Figs. 1 and 2. The calculated chemicai(N) is a periodic function of the magnetic flux with a flux
potential of a 3 3 array and a nine-site ring in the minimal periodicity of y¢, with y<1; (c) the spin-polarization tran-
Hubbard model approximationV=U#0, V;;=0) is sition of the system occurs through the cycles offibeiodic
shown as a function of the applied fluk in Fig. 1. Each S, oscillations in the weak magnetic-field region.

curve in Figs. 1a) [1(c)] traces the chemical potential, of

The result(a) is a trivial outcome of the minimal Hubbard

a 3x 3 array (=9 sites ring with N electrons as a function model: a dominant Zeeman energy tegfiuB leads to
of the magnetic fluxp/ ¢, through a unit cellthe ring, with  single occupancy, effectively suppressing the presence of the
¢o=h/e. Thez component §,) of the total spin of the cor- HubbardU term in Eq.(1). The chemical potential spectrum
responding ground state of the system is shown in Fids. 1 therefore behaves as that of noninteracting spinless fermions
and Xd), and the critical magnetic flux for full spin polariza- in the maximum spin-polarization region. The energy spectra
tion in the array and the ring is given as an inset in Figa) 1 of the nine-site systems plotted in FigaRand in Fig. 7 for
and Xc), respectively. noninteracting quasiparticlgsettinge =A, N=M in Eq.

The three main features of the results shown in Fig. 1 arél)] can be directly compared with the strong-field regions in
(@) the chemical potential spectrum evolves with the maxi-Figs. 1a and Xc). In the weak field region the single-
mization of the total spin polarization in the systdim;apart  particle physics can again be distinguished from the collec-
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' ' ' ' ' d.~8t%a%/(g* ugU)~52¢, with a lattice constant of

1 a=280 nm. For illustrative purposes we rescaled the mag-
netic flux by 1/32 to show the full behavior of the spectrum
on a single scale in Figs.(d—21(d). (This rescaling physi-
cally corresponds to rescaling the lattice constartt'6.)

IV. PERSISTENT CURRENT

We first clarify the physical meaning of the intricate mag-
netic field dependence of the energy spectrum shown in Figs.
1 and 2. It is well knowff* that gauge invariance along with
the single-valuedness of the electron wave function allows
for the existence of a ground-state persistent current in nor-

11¥ (b) | mal metal rings threading an external magnetic flux. The
- 10F | intrinsic magnetic moment associated with this persistent
~ 9 m current, which is proportional to the persistent current itself
5 S W in 1D rings, is an oscillatory function of the external flux
@ with a period equal to the elementary flux quantdg The
6 existence of such an oscillatory persistent current in normal
~ 10F 7 metal rings has been experimentally veriffed.
Z' 8F M\ 7 In finite 2D continuoussystems no magnetization is ex-
e e w—— D oot st e i, o s St ey sapeets
*Zg : \ A 1 the magnetization arising from the bulk orbits. In a quantum-
(S S " mechanical description, however, the contribution from the
-04 -0.2 0.0 0.2 0.4 edge states is expected to be statistically insignifiE%\and
¢/%o the bulk contributions lead to the famous Landau diamagne-
tism in macroscopic 2D systems. In mesoscopic systems the
2 ] © phase coherence length, is comparable to the linear sys-
- tem size L, and as was shown in several theoretical
N papers’®?’ the edge states in this situation can carry a per-
z 3 w sistent current creating a paramagnetic moment in the con-
< 2 ) tinuous 2D geometrie.g., a 2D disk-shaped quantum Xot
1 J— — comparable in magnitude to the Landau diamagnetic term.
~ 10 E The Aharonov-Bohm effect leads to a flux periodicity of the
I 8F — ] magnetization carried by the edge states effectively forming
z — ———— a 1D ring geometry in continuous 2D mesoscopic systems.
s i_ . We characterize the ground state magnetization of finite 2D
E S I e [ Se— guantum dot arrays without resorting to an artificial separa-
i S U tion of bulk and edge statdsvhich are not really meaning-
0 o4 02 o0 0.2 o4 fully distinguishable in small structurg®y considering the
o/%0 lattice model. The lattice spectrum contains the “edge”

_ _ states, the “bulk” states, and all other electron states given
FIG. 2. (@ A chemical potential spectrum plotted vs flux py the superposition of all topologically closed electron
through a unit cell of a noninteracting>33 array withe =A, paths in the finite 2D lattice.
N=M in Eq.(2); (b) [(c)] A chemical potential as a function of flux It is easy to show by using commutation propertiesHof

(top panel, and the corresponding, component of the ground- it the polarization operatdt that the persistent current
state total spirfbottom panelof a 3X 3 array[nine-site ring in(c)] between two nearest-neighbor lattice siteand j in our
with & =A, £,=A(1+6/A) (6/A=0.03) in Eq.(1). (@), (b), and model is given by

(c) can be directly compared with high- and low-field regimes in
Figs. Xa) and(c), respectively.

__Am iy T
tive physics, and the spectrum in this regime is plotted in Jij=- %; (Rj=R)Im{t;j e %icTiacial. (D
Figs. 2b) and Zc) for the array and the ring, respectively. In
Figs. 2b) and 2c) we sete =A, &,=A+45, where The magnetization density,, which has a nonvanishing
8/A(=0.03)<1, andM corresponds to the minimum eigen- component along the magnetic field direction, and the de-
value of Eq.(1) for a givenN. (We keep a small field- rivative of the Hamiltonian in Eq.1) with respect to the flux
independent shifts between opposite spin single-particle (apart from the field dependence of single-particle levels in a
states for our later discussion of tl®& oscillations) The single doj are, therefore, the two equivalent operators.
parameters of the Hamiltonian that we use in E{3$—(5) In this paper we use the convention of calling the magne-
determine the value of the critical magnetic flix needed tization densitym, the persistent curremtin both 1D and 2D
to produce full spin polarization in the>33 array to be systems:
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I=m,=— o . (8 0 k) Teleg eet
Neels? P -!!Eif!ﬁ'l"""
Experimentally, the gquilibrium persistent current is gsually - B, ';!i fhee .
observed by measuring the ground-state magnetization. 5 . . _..'_1 ot !g:
V. NONINTERACTING SPECTRA ; i "“,||iiiEfiiﬁ'?iff:ilm.....,{
We consider first the Hofstadter probl&hof a single -3 h ......... n —.0 1

particle in a magnetic field on an infinite tight-binding lat-

tice. In the Landau gaug&=(0,Bx,0), the discrete Schro
dinger equation in the occupation bakis = Sy P(Xy) is

0.10 0.20 0.30 0.40 0.50

¢/ 9o
_ —i2m (¢l dg) X
Ppix+ly)+y(x=1y)+e Oy +1) FIG. 3. A spectrum of Eq(11) plotted for rational fractions of
+ 27 (dldo) “W(x,y—1)=—E/ty(x,y), (9) flux ¢/ po=p/q (q=120,p is incremented from 1 to §@hrough a

unit cell of an infinite tight-binding lattice. The first two Landau
where ¢ is the flux through a unit cell, and the lattice con- bands 6=0,1) are marked on the plot.

stanta is taken as the unit length. Ab=0, an infinite sys-
tem described by Eq(9) is translationally invariant. The (11) for rational flux values were recently obtained using the

coefficients of Eq(9) involve only x. They motion sepa- Bethe ansatz methdd.The complete spectrum is extremely
rates out’ assuming that thg part of the wave function complex, but a general feature of the spectrum that can be

preserves itgh=0 plane-wave form: seen in Fig. 3, and to which we will later return in our study
of the persistent current in finite systems, is the presence of
P(x,y)=Alky) i(ky X)€Y, (10 energypbands separated by large )g;aps. P
The functiony(k, ,x) is a solution of A quarter of the spectrum for a finitglL X L =15x 15
(L=225) lattice is shown in Fig. 4. A qualitative similarity
P(X+1)+ h(x—1) between the spectra plotted in Figs. 3 and 4 was pointed out
in the literature® the presence of similar energy bands in the

P(X)=—Eltp(X). spectrum, where the gaps between the bands are filled by the
edge states that necessarily exist in finite systems. A finite
(11)  spectrum was studied earlier in connection with the Quantum
. ) . ~ Hall effect and mesoscopic Aharonov-Bohm fluctuatiths.
Equation(11) is the well-known Harper equation, describing The emphasis of these earlier studies was on the part of the
a particle in a one-dimensional quasiperiodic potential. Th%pectrum where both the Landau bands and the edge states

Harper equation spectrum hgsenergy bands at the rational ¢gn pe clearly identifiefthe region from(d) to (e) in Fig. 4.
fractional values of flux¢p= (p/q) ¢y with p and q being

any two integers. At incommensurate flux valges., when
&l ¢ is not rational the spectrum becomes a Cantor Set.
The energy spectrum of Ed1l) is always a continuous
function of the magnetic fluX® independent of whether
¢l pg is rational or irrational. This enables one to make a
direct connection between the lattice and the continuum
spectra, for example, in identifying Landau bands in the lat-
tice spectrum.

The basic features of the spectriihof Eq. (11) (which
we will refer to as the Hofstadter spectrymvhich are also
pertinent for a finite lattice, are(a) it is periodic in ¢,
E(¢)=E(¢dp+ngy); (b) it is an even function of flux,
E(¢)=E(— ¢); (c) both E(¢) and —E(¢) belong to the
spectrum;(d) the spectrum is bounded; 4t<E(¢)<4t. A
quarter of the Hofstadter spectrum plotted for rational values
of the flux is shown in Fig. 3 where we explicitly label the
first two Landau bands. The Landau bands are formed in the
continuum limit when the magnetic length far exceeds the
lattice constant, i.elg=+/(1/27)(¢o/P)>1. In the tight-
binding model, the effective mass fis~7%2/2t. The energy
levels in a lattice foll >1 are approximately given by the
continuous system Landau level expressiorg,
=fiwg(nN+3) with fiw,=4mt$l $o.>° For example, the ra- FIG. 4. A spectrum of a finite 1815 tight-binding lattice vs
tios of the slopes of the first three Landau bands in Fig. 3p/¢, through a unit cell. The different regions that are marked
obey 23.4:15.1:555:3:1. Theanalytical solution of Eq. (a)—(I) on the plot are discussed in the text.

¢
+2 005( 2m—x—k
®o Y

ANINININErS AR L I I
0 010 020 030 040  0.50
¢/ %o

<
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FIG. 5. The persistent current and charge-density distribution of the single-particle states marked in Fig. 4. The darkness of circles, and
darkness, or thickness, of connecting lines are proportional to the magnitude of charge and current, respectively. Arrows on the lines show
a direction of the persistent current. The maximum current and charg®-fl) in units of (et/h) ande, respectively, are 0.028, 0.009;

0.114, 0.018; 0.232, 0.023; 0.250, 0.102; 0.393, 0.039; 0.150, 0.030; 0.162, 0.062; 0.172, 0.019; 0.126, 0.011; 0.161, 0.027; 0.073, 0.015;
0.099, 0.017.
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4

151

10~

FIG. 5. (Continued.

Using Egs.(4) and (7), we calculate the persistent current extended bulk states because the paths of the persistent cur-
distributions in finite lattices forll eigenstates of EQ9). rent carried by these states extend across the sample with
We follow Ref. 30 in the identification of different regions of finite weights both at the boundaries and in the bulk. The
the spectrum and illustrate each region with a sample currerdign of the current carried by these states oscillates, but as
and a charge-density distribution shown in Fig. 5. The lower-¢—0 it is determined by the degree of the degenemof

half band states in the weak fiéfdegime (o> /L) labeled the spectrum aip=0. We identify the first three Landau

(@), (b), and (c) in Figs. 4 and 5 can be considered to bebands in the spectrum labeléd), (e), and(f) in Figs. 4 and
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5 (the traces of the fourth and fifth bands can also be seen in o2
the plod. The ratios of the slopes of the first three bands are I
comparable to those of the infinite tight-binding lattice,
20.2:14.1:5.3. It is interesting to note that the radii of the
“large weight” persistent current orbits in Fig. 5 approxi- _
mately satisfy the semiclassical expression for the cyclotron _0.4l
radius of thenth Landau bandR,=1,y/2n+ 1. The ratios of i
the radii of the persistent current orbits of the first three
Landau bands in Fig. 5 obey:4:2~./5:y/3:1. Thus the
continuous system result approximately holds for a finite lat-
tice as well: eacmth Landau orbit accommodates one more

0.0F

I (et/h)

flux quantum than then— 1) st band orbit. 8:2
For larger flux ¢= (¢o/27), the Landau levels form a = oof
more complicated but less degenerate pattern. We label the 2> 4k
representative statég), (h), and(i) for this region. The dis- 2 o2k
tribution of the persistent current carried by these states ap- —0.4f
pears to consist of disconnected orbits, which can be found —06E
anywhere in the lattice. Intuitively, the existence of these - ' ‘ ‘ : =
disconnected persistent current orbits is consistent with our 0.00 0.10 020 030 040 0.50
general expectation that smaller quantization orbits should ) $/%o
not be strongly affected by the confining potential. FIG. 6. The total persistent currentalculated using Eq8) for

The gaps of the infinite system in Fig. 3 are filled with (3 N=26 electrons on a 2615 lattice[(e) in Figs. 4 and 5 and
edge states between the bulk Landau levels and the branchggl N=73[(h) in Figs. 4 and &
Landau levels in Fig. 4. The current distributions of the rep-
resentative edge states labelgd (k), and(l) in Fig. 4 are
shown in Fig. 5. These edge states have the largest weigh
concentrated near the boundaries in agreement with thesé
states being called the “edge” states. The sign of the current H(x,y)=A(ky) (ky x)expkyy
carried by edge states of the tyfje is paramagnetic in ac- Koy
cordance with the semiclassical argument given by Péeierls. +HA(—ky)g(—ky,x)exp ™, (12)
The flux and energy separation between these states cornghere y(k,,x) and ¢(—k,,x) are the formal solutions of
spond to one added flux quantum through the total area dfq.(11). The motion in thex andy spatial directions gener-
the sample. This is the origin of the periodic Aharonov-ally cannot be separated in Ed.2). The difficulty encoun-
Bohm oscillations superimposed on a regular pattern of déered in obtaining an analytic solution for the spectrum of a
Haas—van Alphen oscillations in the magnetization and irfinite lattice stems from our inability to factor out @é(x)
the magnetoconductance discussed earlier by Sivan arféctor in Eq.(12) corresponding to the opposikg momenta
Imry.%° of an infinite lattice. The origin of this is the breaking of the
The total persistent curremtof a system ofN noninter-  time-reversal symmetry by the magnetic field. Equatibh
acting spinless particles for two valuesifselected in Figs. S not invariant under thé,— —k, transformation. How-
4 and 5 is shown in Fig. 6. From the symmetries of the€Ver, for the two limiting values of the magnetic flyx=0
L=LY2x 1?2 |attice spectrum, it follows that (— ¢)= and ¢=0.5¢,, the time-reversal symmetry is not broken,

—1(), 1(¢+ndg)=1(4), andI(N)=I(L—N). The total and the finite lattice problem can be analytically solved by

current is given by the sum of currents carried by all occy-reducing it to two effectively one-dimensional problems. The

pied single-particle states, and it can be quite different frorlﬁxact solution for these two limiting values of flux is given

the persistent current carried at the Fermi energy. For ex2¥

ample, in Fig. 6a), at flux ¢=0.25¢,, the state at the Fermi p(x,y)=A(k,) gk, ,x)sin(k,), (13)
energy is a second Landau-level bulk stedenoted(e) in ;

Figs. 4 and that carries a diamagnetic persistent currentWhere k, takes on discrete valuesk,=(mn/L,+1)
But the total persistent current is positive at this value of flux(N=1,2. .. .Ly) with L being the extension of the sample
in Fig. 6(a), corresponding to the positive contributions from in they direction. Thex part of the wave function in Ed13)
each filled edge state. The change in the sign of the currerf@tisfies the Harper equation,

In a finite 2D lattice with open boundary conditions, a
neral solution of the Hofstadter problem is formally writ-
n as

from paramagnetic to diamagnetic in the region from P(X+1)+ p(x—1)

¢~0.1¢, to ¢p=~0.2¢, corresponds to merging all first 26

levels into the lowest Landau band. This merging of edge ¢

states into bulk states was discussed in Ref. 30. A similar +2 C°5<27T%X cogky) (x) = —E/tih(X).

change of the sign of the persistent current can be seen in

Fig. 6b) for the region of flux from ¢~0.3¢, to (14
¢~0.37py, where the Fermi energy crosses from thelt can easily be verified by direct substitution that Etp) is
branched Landau states through an edge state into the lowierdeed a solution of Eq9) for the two limiting values of the
Landau-level branched states. flux, =0 and ¢ = 0.5¢,.
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TABLE |. Character table o€C,, taken from Ref. 32. The last
row gives characters of,, on a 3x3 lattice in the occupation
basis.

E C, 2C, 20, 204
Al 1 1 1 1 1
A2 1 1 1 -1 -1
Bl 1 1 -1 1 -1
B2 1 1 -1 -1 1
E 2 -2 0 0 0
X 9 1 1 3 3

At =0, Egs.(13) and (14) reduce to a trivially diago-
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TABLE II. A number m(R) of eigenvalues belonging to an
irreducible representatidR of the C,, group on a_2x L2 |attice.

Lodd I-even
m(A1) (L+4JL+3)/8 (L+4L)/8
m(A2) (L—4\L+3)/8 (L—4L)/8
m(B1) (L—1)/8 L/8
m(B2) (L—1)/8 L/8
m(E) (2L—-2)/8 2L/8

values. Similarly, the number of degenerate states is deduced
for a VL X L lattice, and the results are given in Table II.
An additional electron-hole symmetry in thd X /L prob-

nalizable problem with a solution given by the superposition®M Mixes theJL singly degenerate states with total pseudo-

of two independent standing waves in thandy directions,

l’b(kx ka)zA( kX)A( ky)SIn( kx)slr( ky), and (15)

E(kx )= —2t[cogk,) +cogky)]. (16)

In Egs. (15 and (16) the pseudomomentk, and k, of a
finite L=L,XL, lattice take the discrete valuek
= (mNy(y) Ly 1), with the integers
= Lx(y)- The normalization constants are

AKyy) = 2/V2L )+ H{1—SIM (2L,
+ 1)Ky L (2Lyy) + 1) siN Ky T} Y2

X(y)
Nx(y)

We refer to the quantum numbeks,) as the pseudomo-

menta because the translational invariance is broken in a f
nite lattice, and the momentum is not a good quantum num

ber. At ¢=0.5¢,, the problem reduces to solving the
algebraic equatior\ ,,(E) =0, whereA,, for m=2 obeys a
recursion relation A, =[E/t—2 cosk)]An 1—An-o With
A;=(E/t)?>~4 cos(k,) and A,=E/t—2 cosk). We note
that at¢p=0.5¢, Eq. (14) has the symmetries of a bipartite

lattice, and therefore the eigenspectrum is highly degenerate

at this value of the flux.

At ¢=0, we can characterize the spectrum using eleme
tary group theory. A finite squate= /L X /L lattice has the
symmetries of theC,, spatial point group. It is invariant
under the following symmetry operation&) a rotation of
the whole lattice by zr; (b) a rotation bys; (c) a rotation by
+ 7/2; (d) a reflection around the vertical or horizontal axes
of symmetry; and finallye) a reflection about the two main

n_

momentak, +k,= 1 at zero energy. This can also be seen
from Eq. (16). To summarize, for a finite squaréL X L
lattice at¢p=0, we findg=1 andg=2 degenerate states in
the spectrum as well ag=+L degenerate states in the
middle of the spectrurfsee Figs. @) and 4 at¢=0 for the
examples of these speclra\s ¢— 0 the magnetic field ef-
fects can be calculated in perturbation theory, where the per-
turbing Hamiltonian is given by the total persistent current
operator

¢ <&
Hi=—1t2m— >,
¢O x=1 y=1

Ly—1

(¢’ xy+1)Cxy)—H-Cl.
(17)

At a small flux, the persistent current carried by the singly
gegenerate states is linear in the flux in the lowest nonvan-
ishing (second} order perturbation theory. The persistent
current carried by the doubly degenerate states is easily de-
termined by a degenerate first-order perturbation theory,
where the first-order correction to the energy Es=
+|(y|H4|B) with y and 8 being the two doubly degenerate
states with the same energy & 0.

We summarize our results for the limiting values of flux

r the 3X3 system in Table Ill. For generic values of the
lux, the spectrum of the 83 system is given by the solu-

0
f
tion of the eigenvalue problem of ax® matrix. A symme-

try operation which commutes with the finite two-
dimensional square lattice Hamiltonian &t 0 will reduce

the problem. In a particular gauge such a symmetry opera-
tion should leave invariant the Peierls phase factors in Eq.

(9). In both the symmetrid A= (B/2) (y,—x,0)] and the

diagonals of the lattice. These symmetry operations form fivé.andau[ A=B(0x,0)] gauge, upon transversing the distance

classes, and therefore the eigenstates of®dpelong to five

between the two neighboring points;(y4) and (x,,y,) on

irreducible representations. The degeneracies are immedk square lattice, the electron’s wave function gains a phase

ately deduced from the character taBlef the groupCy,,

proportional tof (2,1)=y,X,—X;y;. The objectf(2,1) is in-

given in Table I. The spectrum is either singly degenerateyariant undero, operations, which are reflections about the

belonging to the one-dimensional A1, A2, B1, or B2 repre-
sentation, or doubly degenerate, belonging to the two
dimensionalE representation. In the last row of Table | we

main diagonals of the lattice, i.ex—y, y—Xx, and
X——Y, Yy——X. It is easy to verify that this symmetry is
indeed observed in the numerically calculated current distri-

show the characters of the reducible representation of theutions in Fig. 5. In these gauges the operations exhaust

group C,, of a 3X3 lattice in the occupation basis. Using

all the spatial symmetries, but we cannot rigorously prove

the character table of the irreducible representations and theat this result is gauge invariant. We can, however, com-
characters of this reducible representation, we deduce thatent on the degeneraciés level crossingswhich occur in

for the 3xX 3 system, group theory predicts two pairs of dou-

the spectrum in Fig. (@) at ¢=3n¢y, n=1,2,3,4. The lim-

bly degenerate eigenvalues and five singly degenerate eigeting cases are given in Table Ill. The degeneracy at
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It is of interest to compare the relative magnitudes of the
1D and 2D noninteracting persistent currents. In the 1D ring
with N electrons the total curreh{N, ¢) is of the same order
as the persistent current carried by the occupied individual
states. This happens due to the cancellation of the persistent
currents carried by the states with opposite momenta in the
ground state distribution. In one period\N, ¢) in the 1D
ring is given by

27 ¢ )Sin(WN/L)

[(Nogd =g Sin(TgﬁTo W,

FIG. 7. The energy spectrum of a nine-site tight-binding ring
shown for one period of flux through the area of a ring; this spec-
trum can be compared with the high-field regime in Fige)1

¢$=0.25p, at zero energy follows from the particle-hole
symmetry. The values of flux at which the degeneracies oc-
cur, ¢=31 ¢y and ¢= 3 ¢, are the values when the first and

—0.5< (?so.s, and (19

second semiclassical orbits are commensurate with the lat- | (Neven =l o sinzrﬂ( N/2+ g)
tice. 0

In a one-dimensional ring of length enclosing a mag- -

. . N+1)7/L
netic flux ¢, the symmetry operator that commutes with the —sin )M}
Hamiltonian is the magnetic translation operator along the sin(ar/L)
ring, and the one-dimensional problem is easily diagonalized
for all values of the flux with a spectrum giveny

<-——=<1, (20)
E,=—-2 i + 18
n= 2t Co§ . nif, (18

wherelg=evg /L with vg=2t/%. Similar formulas were de-
wheren=1,... L. Atafinite flux, the eigenstates of the ring rived in Ref. 14. In a 2D system, the magnitude of the total
Hamiltonian are also the eigenstates of the momentumgurrent can decrease due to the cancellation between oppo-
which are obtained from the momentumd¢at-0 by the same  site sign persistent current contributions coming from bulk
shift (27/L) (¢! $o) for all eigenstates(As we shall show and edge states. In our earlier wdtkwe showed that the
later, this result also holds in an interacting one-dimensionalypical 2D persistent currert 2)? scales with the size of
Hubbard ring. The energy level crossings between any twothe boundary of the system. For completeness, we reproduce

different n and n' states occur at¢ satisfying

in Fig. 8 our results for the calculated system-size depen-

n—n’'=2(¢l/py) +2(integed. The resultant energy spec- dence of the typical current in the half-filled 1D and 2D

trum is periodic in¢ (with a period¢,) through the ring.
The discontinuities in the persistent current occurgat 0

systems with the same flux through the areas of each system.
In the case of a constant flux densitye., the same flux

(¢=0.5) for even(odd total number of electrons in the piercing a unit cell for different systemshe magnetization
ring.}* A typical spectrum of a 1D tight-binding ring is density(or the persistent currensaturates for large system

shown in Fig. 7 for thde=9 site ring.

sizes of 2D lattices for all electron fillings as shown in Fig. 9.

TABLE lll. A summary of the analysis of the:33 tight-binding lattice spectrum for the limiting values

of the flux.
$=0 ¢=0.5¢
E/t (kx,ky) Representation, Lowest-order E/t, k,
parity correction

—2\2 (w4, wl4) Al, + + 724( Pl po)? -2, w4
-2 (/4 , wl2) E, - —apl Pg -2, 3m/4
-2 (w2, wl4) E, — + 7l by —\2, w2
0 (ml4, 3m/4) Mix =27l ¢y —\2, 3w/4
0 (712, w/2) of 0 0,m/2
0 (37/4 , wld) A1B1B2, + +2mwdl Py V2, w4
V2 (w2, 3ml4) E, — — 7wl V2, w2
V2 (374, wl2) E, — + 1wl Py 2, w4
22 (37/4, 37/4) Al, + — w24l o)? 2, 3ml4
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form Vin.==r,Upj; pi| in Eq. (5). The ground-state energy
with fixed N and M as a function of the flux appears to
consist of segments of parabolas with their centers shifted
along both the field and energy axes. F6+=2,3,4,5,6 in
Fig. 10, the energy parabolas belonging to diffefdntalues
overlap for a range of flux, leading to periods¢ oscillations
in Fig. 2(b) for a nonzero Zeeman splitting. This result is not
restricted to 2D systems. We find it to be valid also in 1D
rings. We show in Fig. 11 the flux dependence of the lowest
S ] energy with differeniN andM for which we findS, oscilla-
1.0 1.5 2.0 tions in Fig. Zc) in the Hubbard ring witi. =9 sites. In the
log,o$LY3 rest of this subsection, we solve the Bethe ansatz equations
o1 o . ., o study theS, degeneracy of the ground state of a 1D Hub-
FIG. 8. <l'/2> at half-filing vs system sizesL) (L=L bard ring and then generalize our results to two dimensions.
XL _W|th L*“varying frqm 2 to 10: triangles(2D array, squares The energy and the canonical momentum of lasite
(1D ring). (The average is taken over the range of the same tOtaHubbard ring withN electrons seéFig. 12 enclosing a mag-

flux through the systems, which varies fromgy/2 to ¢o/2.) The : : :
dashed lines are the best linear fits to the depend@fpé®~L netic flux ¢ are given by the Bethe ansatz solution

with «=0.46 (1.1) in a 2D(1D) systems. N
E=—22, cosk;, (22)
j=1

log, {(I*)'/*}

VI. INTERACTING SPECTRA
A. The minimal Hubbard model N 20 b
o I P= —_— |+ J

1. Periodic § oscillations j§=:l L oo 211 i Eal a

Fi é plu ;znlzjng ?Sn?h'n;?irgjiténogsiﬁ?;g;i:L&hti(;esclélﬁ %lggﬁtd In[For the sake of brevity, we refer to the canonical momentum
9 f.th total spi e th d state of a finit P wum d tdefined in Eq.(22) as the momentum from now dnThe
S, of the total spin in the ground state of a finite quantum do nergy and the momentum of the interacting system in Egs.

array. The existence of spin flips in the ground state by itsel : . o
is not surprising. Any level crossing between states with dif- 21) and(22) are given by expressions similar to those for a

ferent spins leads necessarily to a spin flip. The presence of ninteracting system, involving a summation OBl
P o y Spin Tip. P aoseudomomentzk». The pseudomomentk; describe the
another flux value within a magnetic period that leads to !

reverse flip cannot be assumadgbriori. This implies that the charge degrees of freedom that are coupled to the spin de-

lowest-energy states with differe8f can be degenerate for a grees .Of freedpm with associated spin quantum nurmbgrs
in an interacting system. The set of numbésand \,,

range of the magnetic flux or at discrete flux values. Wereferred to as charge and spin rapidities, is fodndy

show in Fig. 10 the magnetic flux dependence of the groundéolvin a set of counled Bethe ansatz equations:
state energy of the>83 array in the minimal Hubbard model 9 P 9 '

_277'

L

K — = 7

[Eq. (5)] for values ofN and M for which we find theS, ) M Sink — X\
oscillations in Fig. 2). To obtain the results in Fig. 10, we Lkj=2ml;+27——— > 2tant =L B (23
sete;;=¢;,=0, and also leave out the terms not contributing $o  p=1 U/4t
to the S, oscillations and consider an interaction of the local \ "
D 2ttt SNk, g +S prary e e
= U/at Tla™ o unzt |
(24)

The quantum numbers; (J,) are integers ifM is even

( N-M is odd and half-odd integers iM is odd (N-M is
even, andJ,, is restricted* to a ranggJ,|<(N—M+1)/2.

The ground-state energy is obtained by taking the consecu-
tive sets of integer; andJ,,, and the lowest excitations are
obtained by having holes in the ground-state distribution of
quantum numbers.

The problem of the persistent current in a 1D Hubbard
ring was studied earlier in Ref. 35. These authors found that
the system accommodates magnetic flux by creating a mag-

20 40 60 80 0 non excitation with a hole in the ground-state distribu-
N tion. In Ref. 35 it was assumed that the spin excitations

FIG. 9. A typical current12)¥2 | at ¢=0.255,, and the maxi- caused by the magnetic flux in the system remain spin waves
mum currentl ,,,, are shown from top to bottom, respectively, as afor all values ofU/t. This allowed Ong to conclude that for
function of N electrons inLY?x L2 systems(with L*? varying  infinite U/t, the ground-state energy hliscusps in a mag-
from 2 to 10 with the same flux density for systems of different netic period. For large but finitd/t relevant to quantum dot
sizes. arrays under investigation, the assumption that a magnetic

(=]
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E/t
E/t

-04 -0.2 0.0 0.2 0.4
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(¢) N=1
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E/t
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FIG. 10. The energy of the>33 quantum dot array calculated using Eg). in a minimal Hubbard model approximati¢V;;/2) =U
=10, Vij=0, e;=¢,=0] as a function of the flux through the unit cell. The energy is plotted for all valu¢s afidM that are found in
the ground state of the array in Figlb2 In (a)—(f), a number of electron in the array is as indicated in the leged;=N/2, M =N/2
—1, M=N/2—-2 energy states are shown with the solid, dotted, and dashed lines, respectively. The states with Miffdrantare

degenerate over the range of flux have the total spi@)ir5=1; (b) S=3; (c) S=2,1,0;(d) S=3; (e) S=1.

field leads to a spin wave excitation in a 1D ring works well. ~ To summarize our analysis of the Appendix, we find that
In the Appendix, we reanalyze the ground-state quantuna 1D Hubbard system i interacting electrons behaves as a
number distribution of a Hubbard ring with particular valuessingle particleon a ring in a magnetic flux: the ground state
of N andM that were singled out in Ref. 35. In addition we corresponds to a sequence of states with the consecutive val-
analyze the ground-state distributionsMf-1 states to un- ues of the total momentum that are defined by §). The
derstand the origin of the periodf, oscillations. resulting ground-state energy hakintersecting parabolic
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FIG. 11. The energy of an nine-site Hubbard ring as a function of the flux through the ring calculated using the Bethe ansatz Egs.
(21)—(24). All parameters and plotting conventions are as given in the caption in Fig. 10. A sequence of states in one magnetic period, for
the flux —0.5< ¢/ $=<0.5 is given by(a) (L/27) P=1,0,-1 (M=1) and (/27) P=1,—1 (M=0); (b) (L/27r) P=1,0~1 (M=1) and
(L2m)P=0 (M=0); (¢) (L/27m)P=2,0-2 (M=2) and (/27)P=1,0-1 (M=1); (d) (L/27)P=3,0~3 (M=3), and
(L27)P=3,1-1,-3 (M=2); (e) (L/127w) P=4,—4 (M=4) and (/27) P=0 (M=3). The states with differeril that are degenerate
over the range of flux have the total spin(@® S=1; (b) S= %; (c) S=1; (d) S=1.

segments per flux period for lardd/t in agreement with tion in the spectrum of spin rapiditiess determined by the
Ref. 35. The interacting system changes its total momenturdynamics of the total momentum that changes sequentially in
as a function of the flux by creating a magnon excitation. Wemultiples of 2x/L from its minimum to its maximum value
find from the numerical solution of the Bethe ansatz Eqswithin one magnetic period. This last finding was not empha-
(21)—(24) that the dynamics of this excitatidie., its loca-  sized in the earlier analysisof the persistent current in a
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of S, over the range of the magnetic flux. This extended
degeneracy is maintained until the total spimd momentum
change in either of the differers, ground states. In the
presence of the extended total spin degeneracies a small non-
zero Zeeman termaf,) in the Hamiltonian in Eq(1) leads to

the periodic oscillations of the componentS, of the total
spinS as shown in Figs. 1 and 2. The reason is the following.
For small w,#0 the ground state is thil =N/2+1 state,
whereas forw,=0 the M=N/2 andM =N/2+ 1 states are
degenerate. Beyond this region, tihi=N/2 state is the
lowest-energy state, and the system changes,itantil it
completes a period and the ground state again becomes
M=N/2+1 state. In the 2D &3 array, similar extended
total spin degeneracies with respect to leM —1,M —2
states lead to th&, oscillations in Figs. (@), 1(b), and Zb).

—5.50F

5 —5-50;‘ 2. Spin-polarization transition
The critical magnetic field®, characterizing the spin po-
larization transition in the minimal Hubbard model is deter-
! mined to begugB.~7.5(t?%/U) and ~11(t%/U) at half-
0.00 010 o0 o030 o040  os0 filling in the L=9 ring and the X 3 array, respectivelysee
(b) ¢/ %0 insets to Fig. 1 In an infinite system, the critical fielB,
corresponds to a field driven ferromagnetic transition and
shown for N=4n+1M=2n case forL=15 N=9 M=4. U was cailculated by. several'aut_hors for a 1D Hubbard ring
—200 () andL=9, N=5, M =2, U=200 (b) for the consecutive neglecting the orbital contrlbgth?‘?. For largeU/t (strong
values of the total momentum in the rings. Each energy curve idhteraction the critical magnetic field in the ring depends on
labeled in the plot by the value of its total momentum expressed ifh€ filling n=N/L through the relationgugB.= (8t%
units of L/27r; in (b) it is also labeled by the value of the total spin U) n[ 1—sin(2an)/(27m)]. In the thermodynamic limit, the
S. critical field at half-filling isgugB.= (8t%U). Qualitatively,
the high valug ~11(t%/U)] of the critical field in the finite
Hubbard ring. This result follows from Eq&1)—(24) inthe 2D system is not surprising, since we expect the quantum
U/N—-c limit. In the limit of the infinite interaction, the fluctuations to have a larger disordering effect in 2D sys-

—5.70F

FIG. 12. The energy of the 1D Hubbard rings vs the flux is

pseudomomenta are given by tems, raising the critical field. More quantitatively, this result
can be understood as follows. The critical field determines
2 L/27)P i itati i i
K=" 2 (1_5__,)|_,+( ) + i . (25 the gap f_o_r the triplet (_a>_<C|tat|_ons in the ferromagn(_atm phase.
L 7 U N do At half-filling, the critical field is then determined by

gueB.=Eo(N=L,M=N—-1)—Eo(N=L,M=N) with E,
A sequential set of the total momentum states which minibeing the lowest eigenvalue of E@) for particular values
mizes charge rapidities in Eq25) and, therefore, the of N andM. The energy of the spin-polarized state is trivial,
ground-state energy can be chosen by considering both, eiy(N,M=N)=—-NgugB./2. In a strongly interactingV
ther spin or charge, excitations in the ground-state quanture-N—1 case, a spin-down electron will “attract” a spin-up
number distribution. The energy cost to create a charge exole. The energetically favorable configuration on a lattice
citation in the infinite interaction limit in a 1D Hubbard ring corresponds to a single site being occupied by the spin-down
is associated with the motion of noninteracting spinless ferglectron and the spin-up hole, and all the other sites being
mions and its _magni_tud.e is_of the ordertoﬂ'he energy cost singly occupied by the ferromagnetically aligned spin-up
to create a spin excitation is determinedtBjU, leading to  electrons. All the electrons contribute the trivial Zeeman
spin excnatlon_s being the most energy-efficient way in th?[erm to the total energy, but the site with the spin-down
1D Hubbard ring to accommodate the enclosed magnetigiectron and its spin-up neighbors also contributes the ex-
flux. change energ\Eq..n- The total energy of the=N-1

The total spinS may not change in a different total mo- _ . : _ _
mentum ground state. Therefore, we find that all cusps in thgpln—gp and one spin-down electrons fi(N=L,M=N
ground-state energy within a magnetic period are associated 1)~ ~ (N~ 1)0usBo/21 gugBo/2+ Eeycp. Therefore, the
with changes in the orbital quantum numbers, but not necesc-rItlcal field is determined by the exc_hangg energysB.
sarily with changes of the total spin. We find the ground:Eexzch' The exchange energy is given bfeycn
states with nonzero total spf to be the generic situation —(4t/U) f(d) with f(d) being the number of spin-up
with respect to the magnitude of the interactiomt, the ~ neighbors of the spin-down electron. In a 1D rifigl) =2,
electron filling, and the flux. Such ground states maintair@nd in large 2D systems on the averaffel)=4 in the

their (2S+ 1) degeneracy with respect to the different valueshearest-neighbor tight-binding square lattice. Note that
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our numerical result for B, in finite 1D rings 13 we compare the noninteracting and interacting persistent
(B.~7.52%/U) is reasonably close to the thermodynamic re-currents calculated in the minimal Hubbard model for the

sult (B,=8t%/U). 3X3 array. The interacting persistent current is suppressed
_ N _ _ by orders of magnitude at half-fillingp=N/(2L) =0.5. This
3. Metal-insulator transition and spin ordering is a finite-size manifestation of the Mott-Hubbard metal-

The charge stiffnesB . that characterizes.=0 (#0) insulator transition ag— 0.5 andU/t+#0. For small values
characterizes the Mott insulatémeta)] the degree of local- of the flux the localization effects due to the magnetic field
ization in a Mott-Hubbard system is defined for a 1D ring of are small, and the magnetic response is not strongly affected

L sites to b&’~4° by interaction at low filling in the metallic phase as can be
seen in Figs. 1@&-13(d). The additional discontinuities of
L ’Eo( o) the persistent current in Fig. 13 arise from the total pir
cT o T&- (26 from accidental degeneracies that occur with no Zeeman

term in the Hamiltonian. In the insulating phasd=9 in
Note that, by definition, the charge stiffness is the negativd=ig. 13 the persistent current is suppressed by orders of
flux derivative of the persistent curre,.~ dl/d¢. In Fig.  magnitude from its noninteracting value. Apparently, the
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FIG. 13. The persistent current in thex3 array of quantum dots as a function of flux through a unit celldér=0 (solid line) and
U/t= 10 (dashed-dotted lindor N=2-9 in (a)—(h), respectively. The array is modeled in the minimal Hubbard approximation, with other
parameters set the same as in Fi@n)2The corresponding componentS, of the total spin in a ground state is shown in the bottom part
of the plots, with an arbitrary offset for the illustrative purposes.
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FIG. 13.(Continued.

ground state is described by one set of quantum numbers tent current in the system can be either diamagnetic or para-
a magnetic period, leading to the absence of discontinuitiesiagnetic. Therefore, a steady paramagnetism that we find in
of the persistent current. The magnetic response is paramati}e half-filled small arrays cannot be understood using a
netic at zero flux. We verify this suppression of the magni-simple analogy with the paramagnetism of the edge states in
tude and oscillations as well as the paramagnetic nature dhe corresponding noninteracting systéhihe sign of the
the persistent current at half-filling by doing calculations fornoninteracting persistent current is paramagnetic in the half-
2X2,3x2, 4x2, and 3x3 quantum dot arrays; these re- filled 2X2, 4xX2, and 33 arrays and is diamagnetic in the
sults are shown in Fig. 14. The rate of the suppression of th8 X2 array. The negative charge stiffness in the interacting
persistent current with the increased strength of the interax2 array is consistent with the earlier predictions for a
tion U/t in the half-filled 3<3 array depends on the orbital L=4Xinteger ring***' We do not know whether this or-
magnetic flux. We compare this rate in th& 3 array for the  bital paramagnetism is a generic feature of the finite half-
two values of the fluxg/ ¢po=0.1 and¢/ p,=0.4 in Fig. 15.  filled 2D Hubbard lattices at zero temperature, but our find-
The magnetic-field localization ap/¢,=0.4 enhances the ing is consistent with previous exact diagonalization studies
effect of the HubbardJ/t on the magnitude of the persistent of the optical conductivity of 44 periodic 2D Hubbard
current, compared to a slower decay of the persistent currefttices which also found a negative Drude weight at
at ¢/ po=0.1. half-filling.** We have calculated the distribution of the local
In the 3X 3 array, the persistent current flows along themoments (O|ASZ'i|O>) in the half-filled finite lattices with the
perimeter of the cluster for aN, but the sign of the persis- Zeeman term set equal to zero in the Hamiltonian. The
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evenlL lattices is a singlet$=0, S,=0), with all the local
moments being very small. In the 1D =9-site ring
(S=3, S,==*1), we do not find any ordering of the local
moments. We conclude that in small clean 2D systems the
onsite interactions strongly suppreg®ssibly exponentially
atN=L) the magnetic response Bs—L, and forN<L the
onsite interactions have a much weaker destructive effect.

I (et/h)

B. Extended Hubbard model

We consider first on-site and nearest neighbor off-site in-
teractions in Eq(5). We setV;;=U, andV;;=V if (ij) are
nearest-neighbor dotd/(;=0 otherwis¢. Equation(1) then
has the form of an extended Hubbard motfef®

The HubbardU by itself leads to a spin-density wave

AN S (SDW) commensurate with the lattice periodicity at half-
-0.4 =02 00 0.2 0.4 filling in a 2D lattice. This SDW state has uniform on-site
¢/ %0 charge density(p;)=1. It is easy to see from Eql) that at

FIG. 14. The persistent current at half-filing in the<2, half-filling the off-site interactionV prefers double occu-

3% 2, 4x 2 clusters of quantum dots wi=0, S,=0 ground state Pancy on the alternating sites, e.9(pi ode) =2, and

and in the 33 lattice with theS=3, S,=3 ground state as a {p; eyeny=0. The minimum energy configuration for a large

function of flux through the unit cell. A key to each curve is indi- nonzeroV is the charge-density wa¥€DW) state commen-

cated in the legend. All of the parameters are set the same as in Figurate with the lattice. The competition betwednand V

2(b). leads to a SDW-CDW transition in both 1D and 2D half-
filled system& *®asV is increased. The mean-field phase

ground state of the 83 array belongs to a doublet with the diagram is easily obtained by considering the strong cou-

total spinS=% andS,=+ 2. At U=0, the uncompensated pling limits of U andV in Eq. (1). The energy of the SDW

moment in the system is distributed along the diagonals o$tate in the half-filled system isEgpy=(U/2)N

the lattice. At finiteU, the off-diagonal dots gain opposite + (V/2) Ny, with N, being the number of all pairs of near-

magnetic moments, and the system is antiferromagneticallg§st neighbors on a lattice. The corresponding energy of the

ordered. We verified that the magnitudes of the neighboringcDW state isEcpyw=4(U/2)(N/2). The phase transition

moments show a tendency to equalize with increasiiy  line at half-filling in the extended Hubbard model is conse-

Therefore, a many-body state in thex3 array at half-filing  quently given by

represents a finite-size realization of the Mott-Heisenberg

insulatof® (antiferromagnetic at a finitd/t) ground state in N

the system, with a Mott-Hubbard gap opening in the charge V=Ve=US—, (27)

excitations(as manifested in the strong suppression of the nn

persistent current in Figs. 13-J15The ground state for the with V<V, being the SDW state. In the 2D lattices with

open boundary conditionsN,,=2L—L,—L, yields for

g T ] largeL, V.~U/2, and in the 1D ringN,,=L with V_,=U.
[ ] In the usual Hubbard model with periodic boundary condi-
12k ] tions, the corresponding equations for the SDW-CDW phase
[ transition areV.=(U/4) (2D) andV.=(U/2) (1D). In the
10k ] half-filled 1D finite rings the charge stiffness maximizes at
o R the transition line between SDW and CDW stdtésntu-
{ 0.8 itively, this seems plausible because the persistent current is
> sensitive to quantum fluctuations, which are maximized at
: 0.6 the phase transition. We find a similar maximization at half-

filing (N=9) of the magnitude of the persistent current in
the 3xX 3 2D array as a function of the off-site interactigit
(Fig. 16. The persistent current is strongly suppressed on
both sides of the SDW-CDW transition while being en-
] hanced at the transition point. The current also changes sign
S S S R at the transition and is more strongly suppressed deep in the
2 4 6 8 CDW phase for largdJ/t. The critical interaction strength
U/t V.=0.65 at which the finite size SDW-CDW “transition”
occurs in the 2D array does not depend on the orbital mag-
FIG. 15. The persistent current as a function of the Hubkitd ~ netic flux (for U/t=10), which is qualitatively consistent
in the 3x3 array with N=L=9 at ¢/¢,=0.1 (solid) and with the mean-field and strong-coupling results. The shape of
¢l po=0.4 (dotted. The same parameters are used as in Rig). 2 the peak in Fig. 16, however, depends strongly on the orbital
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FIG. 16. The persistent current as a function of the nearest- F|G. 18. The persistent current as a function of the long-range
neighbor off-site interactioV/t in the 3x3 array withN=L=9 off-site interaction V/t=(U/t)(C/Cgy) in the 3x3 array with
and U/t=10 at ¢/¢po=0.1 (solid) and ¢/¢,=0.4 (dotted. The ~ N=L=9 andU/t=10 at ¢/ ¢o=0.1 (solid) and ¢/ ¢,=0.4 (dot-
same parameters are used as in Fip).2 ted). The same parameters are used as in Fig. 2

magnetic flux—the transition at a flux g/ ¢,=0.4 showing  that the spin antiferromagnetic order is destroyed in the finite
a larger enhancement than thatdsi,=0.1. 3X 3 array with the electron density distribution remaining

The SDW-CDW transition in a 1D extended HubbardYniform. We set the vagues of;; using the classical capaci-
model is found® to be a second-order phase transition fortance matrix formalisti’ as explained in Sec. II, and show
U/t<U./t=3. and a first-order transition fod/t>U ./t in Fig. 18 our calculated persistent current at half-filling

clt—9, 3 clt-

N=9) as a function of V/t=(U/t)(C/ICy), with
For example, the order parameter of the CDW stat /t=(e2/Cg)/t=10 being fixed in the X3 array. An im-

p=(IN)Zi(—=1)(p;) is nonzero in both SDW and CDW portant conclusion from Fig. 18 is that strong long-range
phases fortU>U,.**** A recent mean-field calculation of interactions could enhance the magnitude of the persistent
the SDW-CDW phase diagram finds the transition to be firsgyrrent back to its noninteracting half-filled value, thereby
order (i.e., discontinuous in the order paramgtier all val-  effectively negating the Mott-Hubbard localization effect.
ues of U and V.*® In the 3x3 system finite-size effects \whether this is a general restite., valid even in the ther-
dominate for weak coupling, and the persistent current peakhodynamic limi or purely a finite-size effect is not clear at
position depends on the orbital flux fa#/t<3. We have this stage. The intermediate values of the long-range interac-
calculated the persistent current as a functionVéf for  tion do not significantly modify the persistent current for
U/t=3, 5, 7, 10, 20, and 30 in the half-filled33 array and N<L. This can be seen in Fig. 19, where we compare the
obtained the finite-size SDW-CDW phase diagram, which igu/t=10, V=0) and U/t=10, V/t=5) persistent current
shown in Fig. 17. The slope &f0.68 of the linear fit to the  for various filling fractions in the 3 array. Our results can
data in Fig. 17 approximately agrees with the value 3/4 prepe understood on the basis of the dependence of the inverse
dicted within the strong-coupling theory. capacitance matrix elements on the relative ratiacCoC, .

With the inclusion of the longer-rangéeyond nearest For simplicity, let us discuss this dependence in a double-dot
neighbor$ off-site interactions in our calculations, we find array. In the limitC/Cy<1, the interdot and intradot inter-
action matrix elements aré;,=U(C/Cy)—0 andVy;=U.

2017 ‘ ‘ ‘ A For C/Cy>1, these matrix elements aré;,=U/2 and
V11=(U/2)(1+ C4/C)—U/2. The large ratio o€/Cy in the
1571 P ] latter case effectively describes a single composite system. In
{ this limit all elements of the inverse capacitance matrix be-
> 10t ] come equal. Thus the electrons become totally uncorrelated,
o and the only effect of interactions is to give an overall charg-
St Aﬂ' ] ing energy to the system. Our results suggest that in a finite
: : : : system with weakly screened interactions the SDW-CDW
5 10 15 20 25 30 transition may not occur, but the persistent current could still
U/t be enhanced to its noninteracting value.
FIG. 17. A phase diagram of the finite-size SDW-CDW transi- VII. DISORDERED QUANTUM DOT ARRAYS

tion in the 3<3 array withN=L=9 is shown for the on-site and
off-site nearest-neighbor interactidd/t and V/t at ¢/¢$,=0.1

(squaresand ¢/ po= 0.4 (triangleg. The same parameters are used  In this section we consider the effect of random disorder
as in Fig. Zb). on the persistent current in the finite 2D quantum dot lattices

A. Noninteracting case
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in the spin polarized regimgsee Figs. &), 4, and 7 as mean free path(W) and a localization lengtii(W). (In the
examples of clean system spectra in this reditée include  4psence of any interaction, in two dimensions for a weak
disorder in our calculation through a spln-mdepen(_jer_]t Pagisorder the localization length £(W) depends
r_ameter\Nthat deno_tes the half-width of a uniform distribu- exponentiallf® on the mean free path &= exgmkdl/2]
tion of random on-site quantum do_t energles.centered arounfiith ke being the Fermi wave vector whereas in one dimen-
A. The random on-site single-particle energies are set as _. . . .
sion ¢~1.) Scaling and perturbative arguments predict that
ei=A+03e;, Je.el —WI2W/2]. (2g)  for weak disorder(and in the absence of interactjothe
conductance of a 2D lattice of size)? depends logarithmi-
The introduction of disorder could, in principle, lead to cally on the mean free path whereas for strong disorder it
Anderson localization in the system, with all electronic statedalls off exponentially with the system size as(L)
being exponentially localized in the presence of strong~exp(—L/£). We find two similar weak- and strong-disorder
disorder’®*®In general, disorderW) and interaction(,V)  regimes in the behavior of the persistent current as a function
compete in determining the electronic properties of the reef the disorder strengtiV, indicating a connection between
sultant (W,U,V+#0) Mott-Hubbard-Anderson model. Disor- the persistent current and the dc conductance of the finite 2D
der introduces two related length scales in the problem: aystem. In one dimension Anderson localization oc¢ues,
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FIG. 19. The persistent current in thex3 array of quantum dots as a function of flux through a unit celldér=10 and long range
interactionV/t=5 (solid line) andU/t=10, V/t=0 (dashed-dotted lindfor N=2-9 in (a)—(h), respectively. Other parameters are set the
same as in Fig.(®). The correspondin§, component of the ground-state total spin is shown in the bottom part of the plots, with an arbitrary

offset for the illustrative purposes.
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FIG. 19.(Continued.
o(L)~exp(=L/&] in the presence of any finite disorc®r, W7, y=(6.4+2.8)X10 2, W<1.55xt
and the persistent current amplitude is exponentialy@(W) =1, - B=1.84+049, W>155nt. (29

suppressed for all W. In Fig. 20 we show the calculated

log-log plot at half-filling of the root-mean-square current We note that the empirical scaling defined by Eq.(2éd
<|2>1/2, averaged over 100 disorder realizations for eactshown in Fig. 2Qis consistent with well-known noninteract-
value of W, as a function of the disorder strengi for ing scaling localization result of there being logarithmic 2D
various array sizes (83, 4x4, 5x5, 6x6). In plotting  localization at weak disorder.

these results, we have factored out a scale facigfL

=(LY?-1)?/L, so that the results for various system sizes B. Interacting case

fall on top of each other, showing approximate scaling with  Random disorder effects on the persistent current are
system size and disordéfThe scale facton.=(L"*~1)?is  syptle in the presence of on-site interactions in the33

the number of unit cells or plaquettes in each square array Qfiray: they depend both on the filling in the array and the
sizeL.] The two dashed straight lines in Fig. 20 give the bestelative ratioU/W. Away from half-filling, the random dis-

fits to weak and strong disorder scaled currents, leading terder suppresses the magnitude of the current and smoothens
the following empirical results for the effect of disorder on its discontinuities arising from level crossings of energies
the persistent currentl 2)2/2=(L/n.)g(W), with the scaling  with different orbital quantum numbers. TI8 oscillations
function g(W) being given by and the corresponding discontinuities in the current in the
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FIG. 20. A log-log plot of(12)}2 ys W averaged over 100 dis-
order realizations for each value &Y is shown U=V=0) at
half-filling in 3X3 (crossel 4X4 (triangles, 5x5 (solid line),
6X 6 (pluses. Asterisks show the interactingJ(t=10V=0) re-
sults at half-filling for the X 3 system.

metallic phase persist in the presence of intermediate

(W=U) disorder. Hubbard interaction effects are not par- (b)
ticularly important at high disorder, which is what is seen in
Fig. 20 (asterisk} for the typical interacting current even at
half-filling. The intermediate disordeM{<U) produces an
antilocalization effect at half-filling by enhancing the persis-
tent current from its finitdJ -suppressed value as can be seen
in Fig. 21(a) and 21b). We also observe that the disordered
persistent current is enhanced in the presence of the long
range interaction from its)-suppressed value as can be seen
in Fig. 21(c). Finally we note that the presence of disorder

I (et/h)

does not reverse the roles of the weak and strong orbital flux: 2 4 6 8

the relative behaviors of persistent currentpts,=0.1 and © v/t

¢l po=0.4 in Fig. 21 can be compared with those for clean . )

systems plotted in Figs. 15 and 18. FIG. 21. The persistent current as a function(@fand (b) the

Hubbard U/t, (c) the long-range off-site interactionV/t
=(U/1)(C/Cq) (with U/t=10) in a disordered 33 array with
VIIl. CONCLUSIONS N=L=9 and at¢/¢,=0.1 (solid) and ¢/¢,=0.4 (dotted. The

We calculate the persistent current and electron additiorgfarSiztent Cu”els\t/ Is .a\é.erag%d. ov;]er 1|0 diSTO'Zder realizations. The

spectrum in coherent two-dimensional semiconductor quang S0 aer Srengtwiis indicated in the plots. The same parameters
. . . are used as in Fig.(B).

tum dot arrays and one-dimensional quantum dot rings
pierced by an external magnetic flux, using the exact diago-
nalization and the Bethe ansatz techniques within an exiS strongly suppressed only at large disorder strengths. The
tended Mott-Hubbard Hamiltonian. We find that the magne-Anderson-Mott transitioff has been found to have a subtle
tization density of a finite multidot array is periodic in the effect on the persistent current in the<3 array at half-
magnetic flux. In weak fields, we find fluseriodic oscilla- ~ filling: the intradot Coulomb interaction less than or compa-
tions in theS, component of the total spiB. We have in- rable to the disorder strengiv (U<W) increases the dis-
cluded in our model the effects of both intradot/interdot Cou-ordered system persistent current.
lomb interactions and random disorder. We find that the We believe that the 2D persistent current physics in the
persistent current is suppressed in the antiferromagneti3x3 array discussed in this paper has already been indi-
Mott-insulating phase. The finite-size realization of the spinrectly observed in transport measurements in<e83array of
density wave—charge density wave ordering transition hastrongly coupled quantum dots fabricated by means of
been found to maximize the 2D array persistent current agquare grid gate structures on top of a GaAgB§, ,As
half-filling at the critical value of the nearest-neighbor inter- heterostructuré.In low magnetic fields B<1T) at T~40
action, a behavior qualitatively similar to the charge stiffnesgmK the three conductance minima were measured in Ref. 5
of 1D rings* We obtain the phase diagram for the SDW- at B=0.18, 0.48, and 0.80 T, and superimposed on these
CDW transition. We demonstrate that the electrostatic longminima small oscillations periodic iB with period of 12
range interdot interactions enhance the magnitude of theT, 21 mT, and 24 mT were seeim the measured magne-
Mott-insulating phase persistent current to its noninteractingoconductance of the X3 array. The large conductance
system value. We find that the noninteracting persistent curminima were interpreted to be due to the classical localized
rent as a function of the random disorder strength exhibits arbits in the array, with the cyclotron radius of each orbit
behavior similar to that of the conductivifjof the system: it being equal toR,=m*v/eB, with R,=330, 125, and 75
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nm in the three minima, respectively. The measured periodot energetics(beyond that of two-level Fock-Darwin-

of small oscillations was attributed to a reduction of a singleZeeman physigscan usually be distinguished from the col-
classical orbit Aharonov-Bohm period due to the couplinglective physics of interest to us. Finally, some of our nones-
between all possible classical orbits with a givepin the  sential approximations, for example, restricting to zero
lattice. We suggest here an alternative explanation of thi$¢émperature and using a constant interdot hopping amplitude
experiment_ First' the observed |arge conductance m|n|mb can eaSily be relaxed in future CaICUIationS |f SUCh a need
correspond to the first three Landau orbits being commensiffises. We emphasize here that these nonessential approxi-
rate with the size of a single dot. The semiclassical cyclotrodnations do not affect our qualitative conclusions in any sig-
radii, R,= \(#/eB)(2n+1), are 60.5 nm(n=0), 64 nm Nificant manner. We believe that the extended finite Mott-
(n=1), and 64 nmn=2) for the three conductance minima, Hubbard model as used by us is the appropriate minimal
respectively. Therefore, we estimate the radius of each dot d§0del which should form the basis of discussing the collec-
63 nm(which is reasonably consistent with the other dimen-tivé and coherent physics in mesoscopic semiconductor
sions of the array These minima should be observed for quantum dot arrays. We feel that the direct observation of
temperatures for which w.<2kT yielding T~1.8 K, which equilibrium persistent current and spin oscnla_mons in _coher-
is consistent withT=2 K where the large conductance ent _quantum dot square I_attlces and rings will shed Ilght_ on
minima start to be affected by the temperafuile agree the interplay among the single dot phy§|cs, co_herence, disor-
with the experimentalists that the shorter period oscillation§€f, 1ong- and short-range Coulomb interaction effects on
are due to the coupling of the electron orbits in the lattice dU@ntum phase transitions that we discuss in this paper.

But we think that the contributing orbits originate from the

quantum mechanically required gauge invariance in the ex- ACKNOWLEDGMENT

perimental phase coherent system. These orbits arise due to
electron hopping between the localized states of each dot.
We estimate that the magnetic flux corresponding to one flux
guantume, piercing a unit cell of the lattice is=46 mT APPENDIX: GROUND-STATE ENERGY OF A HUBBARD

(with a lattice constant odi~300 nn). For the density of the RING ENCLOSING A MAGNETIC FLUX

2DEG and the estimated size of the dot, the number of elec- Here we analyze the ground-state quantum number distri-

trons in each dot is=5. Considering one mobile electron at pution of a Hubbard ring that we obtain by solving numeri-
the Fermi energy in each dot, the experimentaiBarray  cally the Bethe ansatz, Eq921)—(24), for all N<L,
approximately corresponds to oux3 array at half-filing M =N/2, andM=N/2—1.

(in the situation of the weakly screened long-range Coulomb g N=4n+2, M=2n+1, and M=2n, For N=4n+2
interactiong. The persistent current in our case is found toandM =2n+1 the ground-state distribution at a flyx=0
oscillate with a period of¢/$,=0.25 and 0.5[see Figs. s given by®

13(h) and 19h)], which corresponds t&aB=11.5 and 23

mT, which are consistent with the experimentally measured (N-1) (N-1) (N-1)

values. = > s Tl and

Finally, we emphasize three essential limitations of our (A1)
work which may(generally restrict its quantitative applica-
bility to realistic quantum dot arrayéve do believe that our (M—-1) (M—=1)
results describe well the qualitative aspects of coherent and {Jab=— Y
collective physics in semiconductor quantum dot arraiy
we ignore completely the complicatéend interestingde- (M—-1) (M—-1)
tails of single dot electronic structure, approximating the en- ) Tp—1- 2
ergy level in each dot by two spin-split energy levels de-
scribed by the simple Fock-Darwin-Zeeman modg); we (M—-1)
use the Mott-Hubbard model in treating interaction and cor- tpt+l.. 2
relation effects(both intradot and interdpt—such a simple
parametrization of Coulomb correlations may not apply!n Ed.(A2) the positionp of a hole in the distribution of the
quantitatively in real quantum dot array@®) we have con- Spin rapidities varies fronp=0 to p=M within one half of
sidered only smalino more than nine dotdfinite arrays, & magnetic period, ang=0 corresponds to the ground-state
being limited entirely by the exponentially growing Hilbert distribution at¢=0. The ground-state distribution for nega-
space size in our extended Hubbard model. While we see ridve values of the flux is obtained by shifting all, to the
particular hope of going beyond these approximations in théight by one unit. The momentui® of the state is given by
near future, we should emphasize that these limitations déhe momentumq of the spin-wave excitationP=q
not substantially restrict the qualitative applicability of our =— (27/L) p. Thus, the total momentum is zero at zero
results to thecoherent collectivgphysics of quantum dot ar- flux and then takes the values of all consecutive multiples of
rays. For example, currently fabricatedherentjuantum dot ~ —(2#/L) within one-half of a magnetic period, with the
arrays typically contain only two to four quantum dots, andmomentum being equal toL(27) P=—M=—(N/2) at
therefore our finite-size calculations are, in fact, perfectly¢/¢$o=0.5. The distribution in Eq(A2) is valid for N<L;
appropriate. Also, the basic physics of Coulomb blockaddor N=L the distribution of both the charge and spin quan-
and quantum fluctuations are entirely captured in our extum numbers remains symmetric at a nonzero flux. Since
tended Mott-Hubbard model, and the complications of singlgL/27) P o= — (N/2), in the limit of largeU/t the ground

This work was supported by the U.S.-ONR.
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state energy ha¥ cusps at/ ¢o= = (p+1) (L/2N), and the to the ground state of thBl=4n+2 systems. They occur
persistent current is diamagnetic &f ¢o= = p (1/2N). whenever the magnetic field drives the systems with differ-
was proved by Stafford and Millf§ that the N= 4n+2 ent S, through a series of the consecutive total momentum
ground state of the electron system under periodic boundarstates to the flux region where the ground state has a nonzero
conditions is a spin singlet (total spin  total spinS and the differentS, states thus have the same
S=0) at$=0, and it can be either a spin triplébtal spin  total momenta.
S=1) or a singlet aip=0.5¢, (a flux value where the an- b. N=4n, M=2n, and M=2n—-1. ForN=4n (N<L)
tiperiodic boundary conditions are realizeth theL =9-site  and M =2n the ground-state distribution at a fluk=0 is
Hubbard ring we find that ab=0, the ground state is a spin the same as foN=4n+2 andM =2n case that is given in
singlet, and atp=0.5¢, it is a spin triplet withS=1. At  Egs. (A3) and (A4). In the current situation, a spin wave
¢=0.5¢,, the ground state, therefore, has &5§21) spin  excitation is above the Fermi sea, and the minimum momen-
degeneracy. tum is (L/27) P=—[(N/2) —M]=0 at $=0. The ground-
The energy of thédl=4n+2 andM=2n (S,=1) state is  state energy hasl cusps in a perio® and the persistent
higher than the ground-state energy of the singlet state aturrent is diamagnetic at thg/ ¢o= = p(1/2N). The ground
¢=0 [as an example, see Fig. @l for N=6, M=3, and state distribution foN=4n andM =2n—1 is given in Egs.
M =2]. The energy of th&,=1 state ap=0 is minimized (A1) and(A2). For largeU/t, an excitation above the nega-
by choosing the ground-state distribution as tive Fermi sea of spin rapidities can be created, so the mo-
NN N mentum at¢/¢y=0.5 is L/27) P=— (N/2). The S,=0
_ and S,=1 states can have the same minimum momenta
== 7"z tL..z71 and (A3 p_p at »=0. In Fig. 14c) for N=4 electrons in the ring,
the energy parabolas &l =2 andM =1 belonging to the

(M-1) (M-1) spin triplet (S=1) states are coincident in tHé=0 mag-
{Jat=— 2 T o netic flux region centered ab=0. ForN=8 in Fig. 11e)
the levels of theP=0 momentum triplet stateS=1, S,
(M-=1) (M—=1) =1) and (/27) P=*4 singlet state$=0, S,=0) cross in

P P+2...i—5—+1L (M) the vicinity of =0 and are nondegenerate 0.

- ) o c. N=4n+1, M=2n, and M=2n—1. ForN=4n+1
In Eq. (A4) the positionp of a hole in the distribution of the  (N<L) andM =2n electrons in a Hubbard ring, both sets of
spin rapidities varies fropp=M to p=0 within one half of | andJ,, are integer numbers. To accommodate the variation

a magnetic period, ang=M corresponds to a ground-state of the total momenta, two holes are present in the ground-
distribution at¢=0. The charge degrees of freedom containstate distribution at a nonzero positive flux:

a nonzero momentuni(2s) r=— (N/2) in the system, and

the spin rapidities are positioned in the Fermi sea to mini- (N=1) (N-1) (N—1)

mize the total momentum ap=0. The vacant hole in this ly=-—>—-——*L....—%—, and
system is also within the Fermi bounds. The total momentum (A5)
of the state described by Eq#3) and (A4) is (L/27) P=

—[(N/2) —p]. Thus, at¢=0 and ¢/ $,=0.5, the minimum (M 2) M

and maximum momenta ard.R27) P=—1 and (/27) P {J)=- e — P22,
= — (N/2), respectively. Within our numerical accuracy we

do not find that the excitation can create a zero total momen- M

tum at¢=0 in the range of the interactidd/t values from ——=+py,...,0...p1—1p1+1,...;
0 to 200. Therefore, a$p=0, there is a cusp corresponding 2
to the crossing of equal and opposite minimum momenta, (AB)

and the ground-state energy has a totaNef1 cusps per

magnetic period. The spin quantum numbers of WL In Eq. (A6) the positionp; of a hole in a distribution of
ground state remain symmetric in a magnetic period. Thepin rapidities varies fronp;=0 at ¢=0 to p;=M/2 with
S,=0 and theS,=1 states have the same total momenta ap, being fixed atp,=0. While the holep, transverses from
the last segments of the energy curves that inclyle O to M/2, the momentum varies from 0 te (M/2). A fur-
=0.5¢¢. This is a situation for thé&N=6, M=3 andN=6, ther increase of the momentum is accomplished through the
M =2 states in th&. = 9-site ring at¢p=0.5¢, in Fig. 11(d). motion of the second holp, from 0 to (M/2)—1 with p;

The total spin of theM =2 system does not change in a being fixed atM/2. The total momentum becomeB
magnetic period and is equal to 1. The degendvate3 and = — (2@/L) M at ¢/ po=0.5. Therefore, in the ground-state
M =2 states belong to a spin triplet in the segment of thelistribution there is always one hole that moves. We show
energy curve centered at=0.5¢,. We conclude that the the energies for consecutive values of the total momentum in
magnetic flux changes the total momentum of a state sequena-L=15 ring for n=2 and L=9 ring for n=1 for U/t

tially by one unit from one parabola segment to anotfi@r =200 in Figs. 12a) and 12b), respectively. The ground-
smaller values obJ/t, particular values of the total momenta state energy curves in Figs. (B2and 12b) consist of theN

are missing in the ground stdte Each energy parabola seg- consecutive momentum states within a magnetic period. The
ment has a fixed value of the total spin, which may or mayearlier analysis of the persistent current in a Hubbard ring did
not change with a change of the total momenta. The exnot emphasize the dynamics of the total momentum, and Yu
tended degenerate nonzero total spin regions are not specifind Fowler mistakenly concluded that their £§.13 de-
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scribes the ground-state distribution for any nonzero fluxpf the —N/2 momentum concentrated in the charge degrees
and that at the one-half flux quantum all thgs have to be of freedom at zero flux and the consequent integral decrease
consecutive integers. of the total momentum. In th& =9 ring with N=5 elec-
The charge and spin quantum numbers are half-odd interons, for the value of the interactiod/t=10, the states
gers forN=4n+1 andM=2n—1 electrons in aring. The M=2 and M=1 have different values of the total spin
ground state distribution ap=0 for n>1 is given by S=1 andS=2 and the total momenta.(27) P=—1 and
N N N (L/27) P=—2, respectively. These states are nondegener-
{Ij}=— 50 54—1,_ .. ,5—1, and (A7) ate, and there are no oscillations of the total sgjrin the
ground state of th& =9, N=5 Hubbard ring.
M M M d. N=4n-1, M=2n-1, and M=2n—2. The lowest-
(O)=— =, ...~ =+p,—1— = energy state foN=4n—1,M=2n—1 is obtained by choos-
2 2 2 ing the distribution of quantum numbers that is given in Egs.
1 3 1 (A7) and (A8). At zero flux, the holep; starts moving from
+po+1,...,— ST §+ P15 J,=3%, and it moves {1+ 1)/2— 1 consecutive steps to the
right. In the remaining flux region the hopg transverses to
M the right in (M —1)/2—1 consecutive steps. The distribution
+p1, ... ,7+ 1. (A8) intheM=2n-2 case is given in Eq$A5) and(A6). In this
case the holg, moves until the total momentum becomes
In Eq. (A8) the holep,; moves from 0 to ¥ +3)/2 with p, —(N+1)/2 atep/ po=0.5. At $=0 for N=3 electrons in a
being fixed atp,=0, and then the holp, moves from 0 to L=9-sites ring in Fig. 1), the two lowestM=1 and
(M —3)/2 while p;=(M+3)/2. The motion of the holes in M =0 energy states with momentuif+=0 and the total spin
the distribution of the spin rapidities leads to a cancellationS=$ are degenerate in thé=0 region.

*Present and permanent address: Fakulim Physik, Albert- C. T. Foxon, Phys. Rev. Let74, 454(1995.

Ludwigs-Universita, D-79104 Freiburg, Germany. 6G. Kirczenow, Phys. Rev. B6, 1439(1992.

L. P. Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J. P.7p, Delsing, J. E. Mooij, and G. Shon, 8ingle Charge Tunneling
M. Harmans, C. E. Timmering, and C. T. Foxon, Phys. Rev. edited by H. Grabert and M. DevorgPlenum, New York,
Lett. 65, 361 (1990; D. Dixon, L. P. Kouwenhoven, P. L. 1992.

McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev.85 A Middleton and N. S. Wingreen, Phys. Rev. Létt, 3198
B 53, 12 625(1996; R. H. Blick, R. J. Haug, J. Weis, D. Pfann- (1993.

kuche, K. v. Klitzing, and K. Eberlipid. 53, 7899(1996; F. R. 9C. A. Stafford and S. Das Sarma, Phys. Rev. L&g, 3590
Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Camp- (1994 Phys. Lett. A230, 73 (1997.

man, and A. C. Gossard, Phys. Rev. Léfi, 705(1995; F. R 105 yjimeck, G. Chen, and S. Datta, Phys. Rev.5B, 2316

M Westenel, K © Campman. and A C. Gossard, Phys, Rev, (1994 G- Chen, G. Kimeck: S. Datta, G. Chen, and W. A
' : 1 - ampman, - TS ROV Goddard 1, ibid. 50, 8035(1994.

B 53, 1413(1996; C. H. Crouch, C. Livermore, R. M. Wester- |,
velt, K. L. Campman, and A. C. Gossard, Surf. S261/362 12R. Kotlyar and S. Das Sarma, Phys. RevsRB R10 205(1997).
V. Fock, Z. PhysA7, 446(1928.

631 (1996; C. H. Crouch, Ph.D. thesigHarvard University, 13 e i o
Cambridge, MA 1998 C. Livermore, C. H. Crouch, R. M. Y. Imry, in Directions in Condensed Matter Physjeslited by G.

Westervelt, K. L. Campman, and A. C. Gossard, Superlattices C'instein and G. MazenkoNorld Scientific, Singapore, 1986
Microstructures20, 633(1996; O. Klein, C. de C. Chamon, D. p. 101 S. Washburn and R. A. Webb, Adv. Ph@s, 375

Tang, D. M. Abusch-Magder, U. Meirav, X.-G. Wen, M. A. (1989' )
Kastner, and S. J. Wlnd, Phys Rev. L&, 785 (1995’ N. C. Ho-Fai Cheung, E. K. Rledel, and Y. Gefen, PhyS Rev. 165,

van der Vaart, S. F. Godijn, Y. V. Nazarov, C. J. P. M. Har- 287 (1989; Ho-Fai Cheung, Y. Gefen, E. K. Riedel, and W. H.

mans, J. E. Mooij, L. W. Molenkamp, and C. T. Foxdnid. 74, Shih, Phys. Rev. B87, 6050(1988.

4702 (1995; F. Hofmann, T. Heinzel, D. A. Wharam, J. P. B. S. Shastry and Bill Sutherland, Phys. Rev. L&5 243
Kotthaus, G. Bam, W. Klein, G. Trakle, and G. Weimann, 16 (1990.

Phys. Rev. B51, 13 872(1999; A. Yacoby, M. Heiblum, D. V- Ambegaokar and U. Eckern, Phys. Rev. L&, 381 (1990;
Mahalu, and H. Shtrikman, Phys. Rev. Létt, 4047(1995. A. Mlller-Groeling and H. A. Weidenfiler, Phys. Rev. B49,

2C. Livermore and C. H. Crouctprivate communication 4752(1994; T. Giamarchi and B. S. Shastripid. 51, 10 915

3R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, S. J.  (1999; M. Kamal, Z. H. Musslimani, and Assa Auerbach, J.
Pearton, K. W. Baldwin, and K. W. West, Phys. Rev. Lé8, Phys. 15, 1487(1995; M. Ramin, B. Reulet, and Helene Bou-
3088(1992; 71, 613(1993. chiat, Phys. Rev. B1, 5582(1995.

4L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev.}’M. Abraham and R. Berkovits, Phys. Rev. Lét, 1509(1993;
Lett. 64, 2074 (1990; V. Chandrasekhar, R. A. Webb, M. J. G. Bouzerar, D. Poilblanc, and G. Montambaibid. 49, 8258

Brady, M. B. Ketchen, W. J. Gallagher, and A. Kleinsasggd, (1994; T. Chakraborty and P. Pietilzen, ibid. 52, 1932(1995;
67, 3578(1991); D. Mailly, C. Chapelier, and A. Benoiibid. W. Deng, Y. Liu, and C. Gongbid. 50, 7655(1994.

70, 2020 (1993; B. Reulet, M. Ramin, H. Bouchiat, and D. M. Biittiker and C. A. Stafford, Phys. Rev. Left6, 495 (1996.
Mailly, ibid. 75, 127 (1995. 19T Chakraborty and P. Pietilen, Phys. Rev. B0, 8460(1994);

5K.-M. H. Lenssen, M. E. J. Boonman, C. J. P. M. Harmans, and G. S. Jeon and M. Y. Choi, J. Phys.: Condens. Maf{et429



PRB 58

(1996; G. Bouzerar and D. Poilblanc, J. Physz,1877 (1997);
C. A. Stafford and D. F. Wang, Phys. Rev5B, R4383(1997);
Z. Phys. B103 323(1997.

20p. A. Lee and T. V. Ramakrishnan, Rev. Mod. Ph§g, 287
(1985.

21A. Kumar, S. E. Laux, and F. Stern, Phys. Rev.4B, 5166
(1990.

22R. E. Pejerls, Z. Phys80, 763 (1933.

2Jane K. Cullum and Ralph A. Willoughby, Iranczos Algorithms
for Large Symmetric Eigenvalue ComputatiofBirkhauser,
Boston, 1985

24F. London J. Phys. Radiur®, 347 (1937); N. Byers and C. N.
Yang, Phys. Rev. Letf7, 46 (1961); F. Bloch, Phys. Rev137,
A787(1965; M. Buttiker, Y. Imry, and R. Landauer, Phys. Lett.
96A, 365(1983.

25R. PeierlsSurprises in Theoretical Physi¢Brinceton University
Press, Princeton, 19¥9p. 99-110.

26B. L. Altshuler, Y. Gefen, and Y. Imry, Phys. Rev. Le@5, 88
(1992).

27C. W. J. Beenakker, H. van Houten, and A. A. M. Staring, Phys.

Rev. B44, 1657(1991).

28G. D. Mahan,Many-Particle Physics2nd ed.(Plenum Press,
New York, 1990.

2°Douglas R. Hofstadter, Phys. Rev.18, 2239(1976),

30y. Sivan and Y. Imry, Phys. Rev. Lei1, 1001(1988; U. Sivan,
Y. Imry, and C. Hartzstein, Phys. Rev. 3, 1242(1989.

slp, B, Wiegmann and A. V. Zabrodin, Phys. Rev. L&®, 1890
(1999; P. B. Wiegmann and A. V. Zabrodin, iQuantum Field
Theory and String Theoryol. 328 of NATO Advanced Study
Institute Series B: Physics, edited by Laurent Baulielenum,

ADDITION SPECTRUM, PERSISTENT CURRENT, AD. ..

4013

New York, 1995, p. 399; L. D. Fadeev and R. M. Kashaev,
Commun. Math. Physl69 181(1995.

323, W. Leech and D. J. Newman, ifow to Use Group$Methuen,
London, 1969, pp. 29-34.

33E. H. Lieb and F. Y. Wu, Phys. Rev. Le®0, 1445(1968.

34H. J. Schulz, inCorrelated Electron Systemedited by V. J.
Emery (World Scientific, Singapore, 1993

35N. Yu and M. Fowler, Phys. Rev. B5, 11 795(1992.

363. Carmelo, P. Horsch, P. A. Bares, and A. A. Ovchinnikov, Phys.
Rev. B44, 9967(1991); Holger Frahm and V. E. Korepirbid.
43, 5653(1991).

37W. Kohn, Phys. Revl133 A171(1964.

38p_F. Maldague, Phys. Rev. 15, 2437(197%; C. A. Stafford and
A. J. Millis, ibid. 48, 1409(1993.

39p. J. Scalapino, S. R. White, and S. Zhang, Phys. ReA7,5995
(1993.

40k, Gebhard, inThe Mott Metal-Insulator TransitianSpringer
Tracts in Modern Physics Vol. 137Springer-Verlag, Berlin,
1997).

41C. A. Stafford, A. J. Millis, and B. S. Shastry, Phys. Rev48
13 660(199).

42E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera,
Phys. Rev. B45, 10 741(1992; E. Dagotto, Rev. Mod. Phys.
66, 763(1999.

43]. E. Hirsch, Phys. Rev. Lets3, 2327(1984.

4Q. Wang, Z. D. Wang, and J.-X. Zhu, Phys. Rev.58 8108
(1996.

45B. Chattopadhyay and D. M. Gaitonde, Phys. Re\6®8 15 364
(1997; 58, 1689E) (1998.

46D, Belitz and T. Kirkpatrick, Rev. Mod. Phy$6, 261 (1994,
and references therein.



