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Abstract. Orbital magnetism in an integrable model of a
multichannel ring with long-ranged electron-electron inter-
actions is investigated. In a noninteracting multichannel sys-
tem, the response to an external magnetic flux is the sum of
many diamagnetic and paramagnetic contributions, but we
find that for sufficiently strong correlations, the contribu-
tions of all channels add constructively, leading to a parity
(diamagnetic or paramagnetic) which depends only on the
total number of electrons. Numerical results confirm that
this parity-locking effect is robust with respect to subband
mixing due to disorder.

The free energyF (φ) of a metallic ring threaded by an
Aharonov-Bohm flux (~c/e)φ is a periodic function ofφ,
with period 2π [1]. The system is said to be diamagnetic if
F is minimal for φ = 0, and paramagnetic ifF is minimal
for φ = π (1/2 flux quantum). A purely one-dimensional
(1D) ring with N spinless electrons is diamagnetic ifN is
even and paramagnetic ifN is odd, independent of disorder
and interactions [2, 3]. This connection between the parity
of N and the sign of the magnetic response of the system is
sometimes referred to asLeggett’s theorem[2]. The persis-
tent currentI = −(e/~)∂F/∂φ is a periodic function ofφ
with amplitudeI0 = evF /L in a clean 1D ring [4], wherevF
is the Fermi velocity andL the circumference of the ring.
In a ring with many independent channels,I is the sum of
many such diamagnetic and paramagnetic contributions, and
thus has a random sign and small amplitude [1]. Leggett’s
theorem is thus generally violated in multichannel systems.

In an interacting system, the parities of different channels
are no longer independent. In this article, we investigate the
orbital magnetism of 1DSU (M ) fermions interacting via the
potentialV (x) = g/x2. We find that forg > 0, Leggett’s the-
orem is restored for an arbitrary number of channelsM . In
addition, provided the ring is sufficiently thin (kFL > 2πM )
we find that the magnetic response of all channels add con-
structively, leading to a large enhancement of the persistent
current. A disordered two-channel ring with interchannel in-
teractions is also investigated numerically, and shows, im-
portantly, that the parity-locking effect persists even when
the subbands are mixed strongly by disorder. Interchannel
correlations of this sort may be important to explain the

anomalously large observed value of the persistent current
in normal metal rings [5, 6].

Interacting spinless electrons in a non-disordered ring
with M transverse channels, threaded by an Aharanov-Bohm
flux (~c/e)φ, may be represented by 1DSU (M ) fermions.
The transverse degrees of freedom may be represented by an
SU (M ) spin variableσ = 1, . . . ,M . In the absence of disor-
der, and for interactions which depend only on the electrons’
coordinates along the ring (i.e., for thin rings), the number of
electronsKσ in each channel is conserved. The Hamiltonian
of the system is

H = −1
2

N∑
i=1

∂2

∂x2
i

+
∑
i<j

V (xi − xj) +
M∑
σ=1

Kσεσ, (1)

whereN =
∑

σKσ is the total number of electrons andεσ
is the energy minimum of subbandσ. Units with ~ = m =
1 are used. The Aharanov-Bohm flux leads to the twisted
boundary condition [1]

Ψ (x1σ1, · · · , (xi +L)σi, · · · , xNσN )

= eiφΨ (x1σ1, · · · , xiσi, · · · , xNσN ) . (2)

For simplicity, let us consider equally spaced subbands
εσ+1 − εσ = ∆ ≡ EF /M . The subband splitting∆ plays
the role of anSU (M ) magnetic field. As we shall see, the
effect of repulsive interactions is to renormalize this effec-
tive field, causing a condensation of electrons into the low-
est subband. AtT = 0, the equilibrium persistent current is
given byI(φ) = −(e/~)∂E0/∂φ, whereE0(φ) is the ground
state energy of (1), subject to the boundary condition (2).

The first harmonic of the persistent current may be char-
acterized by the value ofI at φ = π/2 (1/4 flux quantum),
assuming the higher odd harmonics are small. ForV (x) = 0,
one finds

I(φ0/4) =
e~π

2mL2

M∑
σ=1

(−1)KσKσ. (3)

For M � 1, this leads to the well-known [7] result|I| ∼
M1/2I0 due to the random parities of the different channels.
The system may be either diamagnetic or paramagnetic, de-
pending on the channel occupanciesKσ.
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Let us next consider a model with long-range interac-
tions: V (x) = g/d(x)2, whered(x) = (L/π)| sin(πx/L)| is
the chord length along the ring. This model was introduced
and solved by Sutherland [8] for the caseM = 1 andφ = 0.
First, we show that theSU (M ) model with twisted bound-
ary conditions is completely integrable. Let us introduce the
following generalized momentum operators

πj = pj − iλ
π

L

∑
k(/=j)

cot
(xj − xk)π

L
Pjk, (4)

where the operatorPjk permutes the isospins and the po-
sitions of the two particlesj and k simultaneously, and
λ =

√
g + 1/4+1/2. These generalized momentum operators

are hermitian,πi = π†i . The Hamiltonian can be expressed
as a quadratic form in terms of theπi,

H =
N∑
i=1

1
2
π2
i +

M∑
σ=1

εσKσ + const. (5)

Introducing a set of new operators ˜πi = πi + λ
∑

j(/=i) Pij ,
one can show that the following infinite number of physical
operators commute with each other

[Ĩn, Ĩm] = 0, (6)

where Ĩn =
∑N

i=1(π̃i)n, with n = 0, 1, 2, . . . ,∞. Further-
more, one can show that these operators also commute with
the Hamiltonian

[H, Ĩn] = 0. (7)

This therefore provides a proof of the complete integrability
of the system. Our proof of integrability follows that given
by Polychronakos for the Calogero-Sutherland model [9].
Note, however, that the operatorPij permutes the positions
and the isospins of two particlesi andj, while the operator
Mij of [9] only exchanges the positions of the two particles.

Consider the following Jastrow wavefunction for given
channel occupanciesKσ

Ψ̃0(x1σ1, x2σ2, · · · , xNσN )

=
∏

1≤i<j≤N
| sin(

xi − xj
L

π)|λ−1 sin(
xi − xj

L
π), (8)

where the isospins of the particles are symmetric under ex-
change. This wavefunction satisfies periodic boundary con-
ditions (φ = 0) if N is odd and satisfies antiperiodic bound-
ary conditions (φ = π) if N is even. It also satisfies Fermi-
Dirac statistics. Furthermore, this wavefunction is annihi-
lated by the operatorsπi, with i = 1, 2, · · · , N :

πiΨ̃0(x1σ1, x2σ2, · · · , xNσN ) = 0, (9)

which indicates that it is the ground state ofH in the sub-
space with fixedKσ. The absolute ground state of the sys-
tem thus occurs forφ = 0 whenN is odd and forφ = π
whenN is even, regardless of the subband spacingεσ. The
Leggett theorem thus holds for this interacting multichannel
system, i.e., the ground state is diamagnetic ifN is odd and
paramagnetic ifN is even.

Now, let us consider general values of the external mag-
netic flux. Forg > 0, the ground state is highly degenerate in
the limitL→∞ in the absence ofSU (M ) symmetry break-
ing (∆ = 0) due to the strong repulsion of the potential at

the origin, which prohibits particle exchange. In a finite ring,
one expects manySU (M ) level crossings [10] as a function
of φ. These states differ in energy by at mostπ~vF /L due
to boundary effects; all electrons will thus be condensed into
the lowest subband for∆ > π~vF /L, i.e., forkFL > 2πM ,
which is satisfied provided the ring is sufficiently thin. The
ground state of the system in this “ferromagnetic” state has
the Jastrow product form

Ψ ({x}) = exp

(
i
φ− a

L

N∑
k=1

xk

)
(10)

×
∏

1≤i<j≤N

∣∣∣∣sin

(
xi − xj

L
π

)∣∣∣∣λ−1

sin

(
xi − xj

L
π

)
for 0 ≤ φ ≤ π, wherea = 0 if N is odd anda = π if N
is even. One readily verifies thatΨ is an eigenstate of (1),
has the correct symmetry, and obeys the twisted boundary
condition (2). This state coincides with the absolute ground
stateΨ̃0 for φ = 0 (π) whenN is odd (even). The ground
state energy is found to be

E0(φ) =
π2(λ + 1)2N (N2 − 1)

6L2
+
N

2

(
φ− a

L

)2

. (11)

The corresponding persistent current is

I(φ0/4) = (−1)N
e~πN

2mL2
∼ (−1)NMI0. (12)

The condensation of all electrons into the lowest subband
caused by the strong repulsive interactions thus leads to an
enhancement of the typical persistent current in the ballistic
regime by a factor ofM1/2 compared to that for noninter-
acting electrons, given in (3).

A peculiarity of the integrable model considered above
is that the number of electrons in each channel is a constant
of the motion. Both disorder and more realistic interactions
which depend on the transverse coordinate will break this
symmetry, and it is therefore important to verify that the
parity-locking effect is not destroyed. To this end, we have
considered a disordered two-channel ring, modeled in the
tight-binding approximation, with a nearest-neighbor inter-
chain interactionV included to induce interchannel correla-
tions. The Hamiltonian is

H =
L∑
i=1

[
2∑
α=1

(
eiφ/Lc†iαci+1α + H.c. +εiαρiα

)
+
∆

2

(
c†i1ci2 + H.c.

)
+ V ρi1ρi2

]
, (13)

where c†iα creates a spinless electron at sitei of chain α,
ρiα ≡ c†iαciα, and εiα is a random number in the interval
[−ε/2, ε/2]. The interchain hopping determines the subband
splitting ∆. Figure 1 shows the persistent current for rings
with 5 spinless electrons on 18 sites as a function ofV ,
calculated using the Lanczos technique. Both the ensemble
average ofI for 500 systems (squares) and the persistent cur-
rent of a typical system (solid curve) are indicated. The er-
ror bars indicate the standard deviationδI = (〈I2〉−〈I〉2)1/2

over the ensemble (not the statistical uncertainty in the mean
value). The subband splitting∆ = 0.8 is chosen so that in
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Fig. 1. Persistent currentI = −(e/~)∂E0/∂φ|φ=φ0/4 of a disordered two-
channel ring with 5 spinless electrons on 18 sites as a function of the
interchain interactionV . The current is given in units ofI0 = evF /L.
The amplitude of the on-site disorder isε = 2 and the subband splitting
is ∆ = 0.8. Solid curve: persistent current for one realization of disorder.
Squares: ensemble average〈I〉 for 500 systems. The error bars indicate
the width δI = (〈I2〉 − 〈I〉2)1/2 of the current distribution. Note that the
persistent current is diamagnetic for largeV , as expected for a system with
N odd due to parity-locking; this is true for all realizations of disorder

the absence of disorder and interactions,K1 = 3 andK2 = 2,
leading to a large cancellation of the persistent current due
to the different parities of the two channels. The on-site dis-
orderε = 2 > ∆, EF mixes the two channels, but does not
lead to strong backscattering. ForV = 0, the sign ofI is
essentially random, and〈I〉 is slightly diamagnetic. AsV
is increased,〈I〉 oscillates in sign and increases in magni-
tude, becoming strongly diamagnetic for largeV . |〈I〉| is
increased by a factor of 10 asV is increased from 0 to
20, while

√〈I2〉 is increased by a factor of 3. The system
exhibits parity locking for largeV .

While the subband occupancies are no longer constants
of the motion in (13), there is a corresponding topological
invariant in the disordered system, namely, the number of
transverse nodes in the many-body wavefunction [2] (i.e.,
nodes which encircle the AB fluxφ). The lowest subband
has no such nodes, while each electron in the second subband
contributes one transverse node. In order for two electrons
to pass each other as they circle the ring, such a transverse
node must be present. AsV increases, it becomes energet-
ically unfavorable for electrons to approach each other, so
transverse nodes in the many-body wavefunction will tend
to be suppressed. In the strongly-correlated limit, all such

nodes will be eliminated, leading to a state whose parity de-
pends only on thetotal number of electrons. In such a state,
the persistent currents of all channels add constructively,
leading to a large persistent current (see Fig. 1). It should
be emphasized that while the enhancement of the persistent
current shown in Fig. 1 is relatively modest, a much larger
enhancement would be expected in a system withM � 1,
based on the above arguments.

In conclusion, it has been shown that for sufficiently
strong electronic correlations, the sign of the orbital mag-
netic response in a multichannel ring is determined solely by
the parity of the total number of electrons in the system. The
magnetic response of all channels add constructively, leading
to a large enhancement of the persistent current. This result,
which we refer to as the parity-locking effect, was demon-
strated in an integrable model with long-range interactions
as well as in a disordered two-channel system. It should be
emphasized that the parity-locking effect holds in both bal-
listic and disordered systems; it is therefore complementary
to mechanisms previously proposed for the enhancement of
the persistent current [11–15], which rely on the competition
between disorder and interactions. It is likely that both such
mechanisms are important to explain the anomalously large
observed value [5, 6] of the persistent current in disordered
metallic rings.
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